ImageVerifierCode 换一换
格式:PPT , 页数:81 ,大小:2.68MB ,
文档编号:3229399      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3229399.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(-定积分的概念及性质课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

-定积分的概念及性质课件.ppt

1、第五章第五章积分学积分学不定积分不定积分定积分定积分定积分 第一节第一节一、一、定积分问题举例定积分问题举例二、二、定积分的定义定积分的定义三、三、定积分的性质定积分的性质定积分的概念及性质 第五五章 教学目的与要求教学目的与要求:理解定积分的概念理解定积分的概念 了解定积分的几何意义了解定积分的几何意义 重点:重点:定积分的概念定积分的概念一、定积分问题举例1.曲边梯形的面积曲边梯形的面积设曲边梯形是由连续曲线)0)()(xfxfy,轴及x以及两直线bxax,所围成,求其面积 A.?A)(xfy 矩形面积ahhaahb梯形面积)(2baha ab bx xy yo oa ab bx xy y

2、o o用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积(四个小矩形)(四个小矩形)(九个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系播放播放曲边梯形如图所示,曲边梯形如图所示,,1210bxxxxxabann 个分点,个分点,内插入若干内插入若干在区间在区间abxyoi ix1x1 ix1 nx;,11 iiiiixxxxxnba长度为长度为,个小区间个小区间分成分成把区间把区间,上

3、任取一点上任取一点在每个小区间在每个小区间iiixx,1 iiixfA )(为为高高的的小小矩矩形形面面积积为为为为底底,以以)(,1iiifxx iniixfA )(1 曲边梯形面积的近似值为曲边梯形面积的近似值为iniixfA )(lim10 时,时,趋近于零趋近于零即小区间的最大长度即小区间的最大长度当分割无限加细当分割无限加细)0(,max,21 nxxx曲边梯形面积为曲边梯形面积为1xix1ixxabyo解决步骤小结:1)分割分割(大化小大化小):在区间 a,b 中任意插入 n 1 个分点bxxxxxann1210,1iiixx用直线ixx 将曲边梯形分成 n 个小曲边梯形;2)以直

4、代曲以直代曲:(常代变常代变)在第i 个窄曲边梯形上任取作以,1iixx为底,)(if为高的小矩形,并以此小梯形面积近似代替相应窄曲边梯形面积,iA得)()(1iiiiiixxxxfA),2,1,nii3)求和求和(近似和):.niiAA1niiixf1)(4)取极限取极限.令,max1inix则曲边梯形面积niiAA10limniiixf10)(limxabyo1xix1ixiix1 ix1xi 2x1 1 分割分割(化整为零化整为零)2 2 以直代曲以直代曲 (以常代变以常代变)iiixfS )(3 3 求和求和(积零为整积零为整)yxoy=f(x)1nx niiixfS1)(ab.分法越

5、细,越接近精确值分法越细,越接近精确值 f(i).ix1 ixi 4 4 取极限取极限yxoy=f(x)令分法无限变细令分法无限变细.ab.分法越细,越接近精确值分法越细,越接近精确值1 1 分割分割(化整为零化整为零)2 2 以直代曲以直代曲 (以常代变以常代变)3 3 求和求和(积零为整积零为整)niiixfS1)(iiixfS )(.f(i)ix1 ixi 4 4 取极限取极限yxoy=f(x)令分法无限变细令分法无限变细.分法越细,越接近精确值分法越细,越接近精确值1 1分割分割(化整为零化整为零)2 2 以直代曲以直代曲 (以常代变以常代变)3 3 求和求和(积零为整积零为整)nii

6、ixfS1)(iiixfS )(f(i)Sab.niiixf1)(lim 记记S=.baxxfd )(.2.变速直线运动的路程设某物体作直线运动,)(21TTCtvv且,0)(tv求在运动时间内物体所经过的路程 s.已知速度思路:把整段时间分割成若干小段,每小段上思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值分过程求得路程的精确值解决步骤解决步骤:1)分割(大化小大化小).,1iiitt任取将它分成,),2,1(,1ni

7、ttii在每个小段上物体经2)以直代曲(常代变常代变).,)(代替变速以iv得iiitvs)(,1,21个分点中任意插入在nTT),2,1(nisi),2,1(nin 个小段过的路程为3)求和(近似和).iniitvs1)(4)取极限取极限 .iniitvs10)(lim)max(1init上述两个问题的共性共性:解决问题的方法步骤相同:“分割(大化小),以直代曲(常代变),求和(近似和),取极限”所求量极限结构式相同:特殊乘积和式的极限设设函函数数)(xf在在,ba上上有有界界,记记,max21nxxx ,如如果果不不论论对对,ba在在,ba中任意插入中任意插入若若干干个个分分点点bxxxx

8、xann 1210把把区区间间,ba分分成成n个个小小区区间间,各各小小区区间间的的长长度度依依次次为为1 iiixxx,),2,1(i,在在各各小小区区间间上上任任取取一点一点i(iix ),),作作乘乘积积iixf)(),2,1(i并作和并作和iinixfS )(1,二、定积分的定义二、定积分的定义1.定义定义怎怎样样的的分分法法,baIdxxf)(iinixf )(lim10 被积函数被积函数被积表达式被积表达式积分变量积分变量积分区间积分区间,ba也也不不论论在在小小区区间间,1iixx 上上点点i 怎样的取法,怎样的取法,只只要要当当0 时时,和和S总趋于总趋于确定的极限确定的极限I

9、,我我们们称称这这个个极极限限I为为函函数数)(xf在在区区间间,ba上上的的定定积积分分,记为记为积分上限积分上限积分下限积分下限积分和积分和注意:注意:(1)积积分分值值仅仅与与被被积积函函数数及及积积分分区区间间有有关关,badxxf)(badttf)(baduuf)((2)定义中区间的分法和)定义中区间的分法和i 的取法是任意的的取法是任意的.(3 3)当函数)当函数)(xf在区间在区间,ba上的定积分存在时,上的定积分存在时,而而与与积积分分变变量量的的字字母母无无关关.称称)(xf在区间在区间,ba上上可积可积.当当函函数数)(xf在在区区间间,ba上上连连续续时时,定理定理1 1

10、定理定理2 2 设函数设函数)(xf在区间在区间,ba上有界,上有界,称称)(xf在在区区间间,ba上上可可积积.且且只只有有有有限限个个间间断断点点,则则)(xf在在2.可积的充分条件:区区间间,ba上上可可积积.,0)(xf baAdxxf)(曲边梯形的面积曲边梯形的面积,0)(xf baAdxxf)(曲边梯形的面积的负值曲边梯形的面积的负值1A2A3A4A4321)(AAAAdxxfba 3、定积分的几何意义、定积分的几何意义各部分面积的代数和几何意义:几何意义:积取负号积取负号轴下方的面轴下方的面在在轴上方的面积取正号;轴上方的面积取正号;在在数和数和之间的各部分面积的代之间的各部分面

11、积的代直线直线的图形及两条的图形及两条轴、函数轴、函数它是介于它是介于xxbxaxxfx ,)(例例1 1 利用定义计算定积分利用定义计算定积分.102dxx 解解将将1,0n等等分分,分分点点为为nixi,(ni,2,1)nio1 xy2xy 小区间小区间,1iixx 的长度的长度nxi1 ,(ni,2,1)取取iix ,(ni,2,1)iinixf )(1 iinix 21,12iniixx nnini121 niin12316)12)(1(13 nnnn,121161 nn n0 dxx 102iinix 210lim nnn121161lim.31 o1 xyni2xy 注 利用利用,

12、133)1(233nnnn得133)1(233nnnn1)1(3)1(3)1(233nnnn1131312233两端分别相加,得1)1(3n)21(3nn即nnn3323nii12332)1(nnnnii1261)12)(1(nnn)21(3222n例例2 2 利用定义计算定积分利用定义计算定积分.121dxx 解解在在2,1中中插插入入分分点点 12,nqqq,典型小区间为典型小区间为,1iiqq,(ni,2,1)小小区区间间的的长长度度)1(11 qqqqxiiii,取取1 iiq,(ni,2,1)iinixf )(1 iniix 11)1(1111 qqqinii niq1)1()1(q

13、n取取2 nq即即nq12),12(1 nn)12(lim1 xxxxxx112lim1 ,2ln)12(lim1 nnn,2ln dxx 211iniix 101lim )12(lim1 nnn.2ln iinixf )(1 121lim)2(ppppnnnnnipn1lim1nixxpd10iix例3.用定积分表示下列极限用定积分表示下列极限:ninnin111lim)1(121lim)2(ppppnnn解解:ninnin111lim)1(nninin11lim1iixxxd110 x01ni 1ni说明:,)(baCxf设,d)(存在则baxxf根据定积分定义可得如下近似计算方法:),1

14、,0(nixiaxi,nabx),1,0()(niyxfii记baxxfd)(.1xyxyxyn110)(110nnabyyy将 a,b 分成 n 等份:abxoyix1ix(左矩形公式)(21nnabyyy(右矩形公式)baxxfd)(.2xyxyxyn21baxxfd)(.3xyyii211)()(21110nnyyyynab(梯形公式梯形公式)11ni为了提高精度,还可建立更好的求积公式,例如辛普森abxoyix1ix公式,复化求积公式等,并有现成的数学软件可供调用.证明证明nnnnfnfnf 21lim nnnnfnfnfe21limlnnnnnfnfnf 21lim试证试证.10)(

15、ln dxxfe利用对数的性质得利用对数的性质得 nifnnine1ln1limnnifnine1lnlim1 指指数数上上可可理理解解为为:)(lnxf在在1,0区区间间上上的的一一个个积积分分和和分分割割是是将将1,0n等等分分分点为分点为nixi,(ni,2,1)nnnnfnfnfe21lnlim极限运算与对数运算换序得极限运算与对数运算换序得nnifnin1lnlim1 10)(lndxxf故故nnnnfnfnf 21lim.10)(ln dxxfe因为因为)(xf在区间在区间1,0上连续,且上连续,且0)(xf所所以以)(lnxf在在1,0上上有有意意义义且且可可积积,对定积分的对定

16、积分的补充规定补充规定:(1)当)当ba 时,时,0)(badxxf;(2)当当ba 时时,abbadxxfdxxf)()(.说明说明 在下面的性质中,假定定积分都存在,在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小且不考虑积分上下限的大小1 1、基本内容、基本内容三、定积分的性质证证 badxxgxf)()(iiinixgf )()(lim10 iinixf )(lim10 iinixg )(lim10 badxxf)(.)(badxxg badxxgxf)()(badxxf)(badxxg)(.(此性质可以推广到有限多个函数作和的情况)(此性质可以推广到有限多个函数作和的情况)

17、性质性质1 1 babadxxfkdxxkf)()(k为为常常数数).证证 badxxkf)(iinixkf )(lim10 iinixfk )(lim10 iinixfk )(lim10 .)(badxxfk性质性质2 2 badxxf)(bccadxxfdxxf)()(.补充补充:不论:不论 的相对位置如何的相对位置如何,上式总成立上式总成立.cba,例若例若,cba 假设假设bca 性质性质3 3abc cadxxf)(cbbadxxfdxxf)()(badxxf)(cbcadxxfdxxf)()(.)()(bccadxxfdxxf(定积分对于积分区间具有可加性)(定积分对于积分区间具有

18、可加性)则则dxba 1dxba ab .则则0)(dxxfba.)(ba 证证,0)(xf,0)(if),2,1(ni,0 ix,0)(1 iinixf,max21nxxx iinixf )(lim10 .0)(badxxf性质性质4 4性质性质5 5如如果果在在区区间间,ba上上0)(xf,例例 1 1 比较积分值比较积分值dxex 20和和dxx 20的大小的大小.解解令令,)(xexfx 0,2 x,0)(xf,0)(02 dxxexdxex 02,02dxx 于是于是dxex 20.20dxx 性质性质5 5的推论:的推论:证证),()(xgxf,0)()(xfxg,0)()(dxx

19、fxgba,0)()(babadxxfdxxg于是于是 dxxfba)(dxxgba )(.则则dxxfba)(dxxgba )(.)(ba (1 1)dxxfba)(dxxfba )(.)(ba 证证,)()()(xfxfxf ,)()()(dxxfdxxfdxxfbababa 即即dxxfba)(dxxfba )(.说明:说明:可积性是显然的可积性是显然的.|)(xf|在区间在区间,ba上的上的性质性质5 5的推论:的推论:(2 2)证证,)(Mxfm ,)(bababaMdxdxxfdxm).()()(abMdxxfabmba (此性质可用于估计积分值的大致范围)(此性质可用于估计积分值

20、的大致范围)则则 )()()(abMdxxfabmba .性质性质6 6解解,sin31)(3xxf ,0 x,1sin03 x,31sin31413 x,31sin31410030dxdxxdx .3sin31403 dxx解解,sin)(xxxf 2sincos)(xxxxxf 2)tan(cosxxxx 2,4 x,0)(xf在在2,4 上上单单调调下下降降,故故4 x为为极极大大点点,2 x为为极极小小点点,22)4(fM,2)2(fm,442 ab,422sin4224 dxxx.22sin2124 dxxx例4.试证试证:.2dsin120 xxx证证:设)(xf,sinxx则在)

21、,0(2上,有)(xf2sincosxxxx)tan(xx2cosxx0)0()()(fxff2即2,1)(xf),0(x2故xxxfxd1d)(d2220002即2dsin120 xxx如如果果函函数数)(xf在在闭闭区区间间,ba上上连连续续,证证Mdxxfabmba )(1)()()(abMdxxfabmba 由闭区间上连续函数的介值定理知由闭区间上连续函数的介值定理知则则在在积积分分区区间间,ba上上至至少少存存在在一一个个点点 ,使使dxxfba)()(abf .)(ba 性质性质7 7(定积分中值定理)(定积分中值定理)积分中值公式积分中值公式在区间在区间,ba上至少存在一个点上至

22、少存在一个点,使使,)(1)(badxxfabfdxxfba)()(abf .)(ba 在区间在区间,ba上至少存在一上至少存在一个点个点,即即积分中值公式的几何解释:积分中值公式的几何解释:xyoab)(f使使得得以以区区间间,ba为为以以曲曲线线)(xfy 底底边边,为曲边的曲边梯形的面积为曲边的曲边梯形的面积等于同一底边而高为等于同一底边而高为)(f的的一一个个矩矩形形的的面面积积。oxbay)(xfy 说明:.都成立或baba 可把)(d)(fabxxfba.,)(上的平均值在理解为baxf故它是有限个数的平均值概念的推广.积分中值定理对abxxfbad)(因nabfabniin)(l

23、im11)(1lim1niinfn例5.计算从 0 秒到 T 秒这段时间内自由落体的平均速度.解解:已知自由落体速度为tgv 故所求平均速度v2211TgT2TgTttg0d01Totgv vTt221TgS 解解由积分中值定理知有由积分中值定理知有,2,xx使使dttfttxx 2)(3sin),2)(3sinxxf dttfttxxx 2)(3sinlim)(3sinlim2 f)(3lim2 f.6 五、小结五、小结定积分的实质:特殊和式的极限定积分的实质:特殊和式的极限定积分的思想和方法:定积分的思想和方法:分割分割化整为零化整为零求和求和积零为整积零为整取极限取极限精确值精确值定积分

24、定积分求近似以直(不变)代曲(变)求近似以直(不变)代曲(变)取极限取极限3 3定积分的性质定积分的性质(注意估值性质、积分中值定理的应用)(注意估值性质、积分中值定理的应用)4 4典型问题典型问题()估计积分值;()估计积分值;()不计算定积分比较积分大小()不计算定积分比较积分大小思考题思考题 1 1将和式极限:将和式极限:nnnnnn)1(sin2sinsin1lim表示成定积分表示成定积分.思考题思考题1解答解答原式原式 nnnnnnnnsin)1(sin2sinsin1lim ninnin1sin1limnninin 1sinlim1.sin10 xdxix i 思考题思考题 2思考

25、题思考题2解答解答 由由)()(xgxf 或或)()(xgxf在在,ba上上可可积积,不不能能断断言言)(),(xgxf在在,ba上上都都可可积积。为无理数为无理数,为有理数为有理数xxxf0,1)(为无理数为无理数,为有理数为有理数xxxg1,0)(显然显然)()(xgxf 和和)()(xgxf在在1,0上可积,但上可积,但)(),(xgxf在在1,0上都不可积。上都不可积。例例3.P233 题题34.P233 题8(2),(4)题8(4)解解:设,)1ln()(xxxf则xxf111)(1,0(x,0)(xf 1,0(,0)0()(xfxf0d)(10 xxf即xxxxd)1(lnd101

26、0一、一、填空题:填空题:1 1、函数函数)(xf 在在 ba,上的定积分是积分和的极限,上的定积分是积分和的极限,即即 badxxf)(_.2 2、定积分的值只与定积分的值只与_及及_有关,而与有关,而与_的记法无关的记法无关.3 3、定积分的几何意义是定积分的几何意义是_.4 4、区间区间 ba,长度的定积分表示是长度的定积分表示是_.二、二、利用定积分的定义计算由抛物线利用定积分的定义计算由抛物线,12 xy两直线两直线)(,abbxax 及横轴所围成的图形的面积及横轴所围成的图形的面积.三、三、利用定积分的定义计算积分利用定积分的定义计算积分 baxdx,)(ba .练练 习习 题题

27、1 1四、四、利用定积分的几何意义,说明下列等式:利用定积分的几何意义,说明下列等式:1 1、41102 dxx;2 2、2022cos2cosxdxxdx;五、五、水利工程中要计算拦水闸门所受的水压力,已知水利工程中要计算拦水闸门所受的水压力,已知闸门上水的闸门上水的是是压强压强 P的的水深水深 h函数,且有函数,且有)(8.92米米千千米米hp ,若闸门高,若闸门高米米3 H,宽,宽米米2 L,求水面与闸门顶相齐时闸门所受的水,求水面与闸门顶相齐时闸门所受的水压力压力P(见教材图(见教材图 5-35-3).一、一、1 1、niiixf10)(lim ;2 2、被积函数、被积函数,积分区间积

28、分区间,积分变量;积分变量;3 3、介于曲线、介于曲线)(xfy ,轴轴x,直线直线bxax ,之间之间 各部分面积的代数和;各部分面积的代数和;4 4、badx.二、二、abab )(3133.三、三、)(2122ab .五、五、88.2(88.2(千牛千牛).).练习题练习题1答案答案一、一、填空题:填空题:1 1、如果积分区间如果积分区间 ba,被点被点c分成分成 bcca,与与,则,则定积分的可加性为定积分的可加性为 badxxf)(_;2 2、如果如果 baxf,)(在在上的最大值与最小值分别为上的最大值与最小值分别为Mm与与,则,则 abdxxf)(有如下估计式:有如下估计式:_

29、_ _;3 3、时时当当ba ,我们规定,我们规定 badxxf)(与与 abdxxf)(的关的关系是系是_;4 4、积分中值公式积分中值公式 badxxf)()(,)(baabf 的几何意义是的几何意义是 _ _;练练 习习 题题 25 5、下列两积分的大小关系是:下列两积分的大小关系是:(1 1)102dxx_ 103dxx(2 2)21ln xdx_ 212)(lndxx(3 3)dxex 10_ 10)1(dxx二、二、证明:证明:babadxxfkdxxkf)()((是常数是常数k).三、三、估计下列积分估计下列积分 333cot xdxxarc的值的值.四、证明不等式:四、证明不等

30、式:2121dxx.六、用定积分定义和性质求极限六、用定积分定义和性质求极限:1 1、)21.2111(limnnnn ;2.2.、40sinlim xdxnn.七、设七、设)(xf及及 baxg,)(在在上连续,证明:上连续,证明:1 1、若 在若 在 ba,上上0)(xf,且且 badxxf0)(,则 在,则 在 ba,上上0)(xf ;2 2、若在、若在 ba,上,上,0)(xf,且且)(xf不不0恒等于恒等于,则,则 badxxf0)(;3 3、若在若在 ba,上上)()(xgxf,且且 babadxxgdxxf)()(,则在,则在 )()(,xgxfba 上上 .一、一、1 1、bc

31、cadxxfdxxf)()(;2 2、baabMdxxfabmba ,)()()(;3 3、badxxf)(abdxxf)(;4 4、曲边梯形各部分面积的代数和等于、曲边梯形各部分面积的代数和等于 为邻为邻与与abf)(边的矩形面积;边的矩形面积;5 5、(1)(1);(2)(2);(3).(3).三、三、1 1、32arctan9331 xdxx;2 2、53arcsin24213210 xxxdx.练习题练习题2 2答案答案观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,

32、观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面

33、积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示

34、过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系观察下列演示过程,注意当分割加细时,观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系矩形面积和与曲边梯形面积的关系

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|