ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:378.38KB ,
文档编号:326200      下载积分:10 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-326200.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(jackWPS)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(小升初22次课程06-加乘原理(教师版).docx)为本站会员(jackWPS)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

小升初22次课程06-加乘原理(教师版).docx

1、 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法那么,考虑完成这件事所有可能的做法,就要用加法原理来解决. 乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯 内7计数综合加法原理分类讨论中加法原理的应用树形图法、标数法及简单的递推简单乘法原理的应用树形图法标数法简单递推:斐波那契数列的应用乘法原理简单乘法原理的应用较复杂的乘法原理应用1、加法原理概念引入(宋体五号加粗)例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津那么他在一天中去天津能有多少

2、种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法在上面的问题中,完成一件事有两大类不同的方法在具体做的时候,只要采用一类中的一种方法就可以完成并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数2、加法原理的定义一般地,如果完成一件事有k类方法,第一类方法中有种不同做法,第二类方法中有种不同做法,第k类方法中有种不同做法,则完成这件事共有种不同方法,这就是加法原理加法原理运用的范围:完成一件事的方法分成

3、几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决我们可以简记为:“加法分类,类类独立”分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: 完成这件事的任何一种方法必须属于某一类; 分别属于不同两类的两种方法是不同的方法只有满足这两条基本原则,才可以保证分类计数原理计算正确运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数通俗地说,就是“整体等于局部之和”3、加法原理解题三部曲完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所

4、有符合条件的对象一一列举出来进行计数分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法枚举的时候要注意顺序,这样才能做到不重不漏【例1】 小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法【难度】【答案】38【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法根据加法原理,小宝买一种礼物有8+20+10=38种方法【例2】 从110中每次取两个不同的数相加,和大于10的共有多少种取法?【难度】【答案】25【解析

5、】根据第一个数的大小,将和大于10的取法分为9类:第一个数第二个数有几种第1类110选择合适的分类方式是运用加法原理的关键好的分类方式往往达到事半功倍的效果注意:本题中“”与“”只能算一种取法1第2类210、92第3类310、9、83第4类410、9、8、74第5类510、9、8、7、65第6类610、9、8、74第7类710、9、83第8类810、92第9类9101因此,根据加法原理,共有:1+2+3+4+5+4+3+2+1=25种取法使和大于10【例3】 甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?【难度】【答案】7【解析】甲厂可以

6、订99、100、101份报纸三种方法如果甲厂订99份,乙厂有订100份和101份两种方法,丙厂随之而定如果甲厂订100份,乙厂有订99份、100份和101份三种方法,丙厂随之而定如果甲厂订101份,乙厂有订99份和100份两种方法,丙厂随之而定根据加法原理,一共有种订报方法【例4】 一次,齐王与大将田忌赛马每人有四匹马,分为四等田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等田忌有_种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛【难度】【

7、答案】12【解析】第一场不管怎么样田忌都必输,田忌只可能在接下来的三场里赢得比赛, 若三场全胜,则只有一种出场方法; 若胜两场,则又分为三种情况:二,三两场胜,此时只能是田忌的一等马赢得齐王的二等马,田忌的二等马赢齐王的三等马,只有这一种情况;二,四两场胜,此时有三种情况;三,四两场胜,此时有七种情况;所以一共有种方法【例5】 用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?【难度】【答案】182【解析】如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为025张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票023张,其

8、余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票021张,其余的钱全部购买2元饭票,共有22种不同方法;如果买12张8元饭票,还剩4元饭票,可购4元饭票01张,其余的钱全部购买2元饭票,共有2种方法总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+2=(26+2)132=182(种) 共有182种不同的买法【例6】 袋中有3个红球,4个黄球和5个白球,小明从中任意拿出6个球,他拿出球的情况共有_种可能(2008年北京“数学解题能力展示”读者评选活动【难度】【答案】18【

9、解析】按最少的红球来分类:3红时,黄白3,黄可取0,1,2,3共4种2红时,黄白4,黄可取0,1,2,3,4共5种1红时,黄白5,黄可取0,1,2,3,4共5种0红时,黄白6,黄可取0,1,2,3共4种共有:4+5+5+4=18(种)【例7】 1995的数字和是1995=24,问:小于2000的四位数中数字和等于26的数共有多少个? 【难度】【答案】6【解析】小于2000的四位数千位数字是1,要它数字和为26,只需其余三位数字和是25因为十位、个位数字和最多为99=18,因此,百位数字至少是7于是百位为7时,只有1799,一个;百位为8时,只有1889,1898,二个;百位为9时,只有1979

10、,1997,1988,三个;总计共123=6个【例8】 有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如,等等,这类数共有 个【难度】【答案】45【解析】按自然数的最高位数分类: 最高位为的有 ,共个最高位为的有,共个最高位为的有, ,358,共个最高位为的有共个所以这类数共有个【例9】 A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种?(2005年小数报数学邀请赛)【难度】【答案】10【解析】如图,第一次传给,到第五次传回有5种不同方式 同理,第一次传给,也有5种不同方

11、式 所以,根据加法原理,不同的传球方式共有种1、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到

12、黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了这个时候我们的乘法原理就派上上用场了2、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同的方法那么完成这件事情一共有ABN种不同的方法结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有52个可选择的路线了,即10条3、乘法

13、原理概念引入1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘4、乘法原理概念引入1、路线种类问题比如说老师举的这个例子就是个路线种类问题;2、字的染色问题比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法;3、地图的染色问题同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题比如说6个同学,排成一个队伍,有多少种排法;5、数码问题就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法【例10】 由数字1、2可以组成多少个两位数? 由数字1、

14、2可以组成多少个没有重复数字的两位数?【难度】【答案】4【解析】组成两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,有2种方法根据乘法原理,由数字1、2可以组成22=4个两位数,即11,12,21,22组成没有重复数字的两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,因为要组成没有重复数字的两位数,因此十位上用的数字个位上不能再用,因此第二步只有1种方法,由乘法原理,能组成21=2个两位数,即12,21【例11】 有五张卡,分别写有数字1、2、4、5、8现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不

15、同的偶数?【难度】【答案】36【解析】分三步取出卡片首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、8三种不同的选择;第二步在其余的4张卡片中任取一张,放在最左边的位置上,也就是百位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在中间十位数的位置上,有3种不同的选择根据乘法原理,可以组成343=36个不同的三位偶数【例12】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块,如此进行8步操作,问:

16、如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法【难度】【答案】1536【解析】 【解析】对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2,所以一共有:种【例13】 邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?【难度】【答案】6【解析】把可能出现的情况全部考虑进去 第一步第二步由分析知邮递员由A村去B村是第一步,再由B村去C村为第二步,完成第一

17、步有3种方法,而每种方法的第二步又有2种方法根据乘法原理,从A村经B村去C村,共有32=6种方法【例14】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过问:他最多有几种不同走法?【难度】【答案】6【解析】从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有32=6种走法【例15】 要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?【难度】【答案】216.【解析】第一步选出学习先进集体一共有6种方法,第二步选出体育先进集体一共有6种方法,第三步选出卫生先进集体一共有6种评选方法,根据乘法原理,一共有种评选方法【例16】 “数

18、学”这个词的英文单词是“MATH”用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样这些颜色一共可以染出多少种不同搭配方式?【难度】【答案】120【解析】为了完成对单词“MATH”的染色,我们可以按字母次序,把这个染色过程分四步依次完成: 第1步对字母“M”染色,此时有种颜色可以选择; 第2步对字母“A”染色,由于字母“M”已经用过一种颜色,所以对字母“A”染色只有4种颜色可以选择; 第步对字母“T”染色,由于字母“M”和“A”已经用去了2种颜色,所以对字母“T”染色只剩种颜色可以选择; 第4步对字母“H”,染色,由于字母“M”、“A”和“T”已经用去了3种颜色,所以对字母

19、“H”染色只有2种颜色可以选择由乘法原理,共可以得到种不同的染色方式【例17】 北京到上海之间一共有6个站,车站应该准备多少种不同的车票?(往返车票算不同的两种) 【难度】【答案】56【解析】京沪线上中间六个站连北京上海两站一共有8个站,不同的车票上起点站可以有8种,相同的起点站又可以配7种不同的终点站,所以一共要准备87=56种不同的车票【习题1】 从18中每次取两个不同的数相加,和大于10的共有多少种取法?【难度】【答案】A【解析】两个数和为11的一共有3种取法;两个数和为12的一共有2种取法; 两个数和为13的一共有2种取法;两个数和为14的一共有1种取法; 两个数和为15的一共有1种取

20、法; 一共有3+2+2+1+1=9种取法【习题2】 一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角小明要在该店花5元5角购买两种文具,他有多少种不同的选择【难度】【答案】8【解析】一共三种文具,要买两种文具那么就可以分三类了第一类:橡皮和圆珠笔 5元5角=55角=11块橡皮(要买两种,所以这个不考虑)=9块橡皮+1只圆珠笔 =7块橡皮+2只圆珠笔 =5块橡皮+3只圆珠笔 =3块橡皮+4只圆珠笔 = 1块橡皮+5只圆珠笔 第一类共5种第二类:橡皮和钢笔 55角=11块橡皮(不做考虑) =6块橡皮+1只钢笔=1块橡皮+2只钢笔 第二类共2种第三类:圆珠笔和钢笔55角=11块橡皮(不做考虑

21、) =1只钢笔+3只圆珠笔第三类共1种【习题3】 一只青蛙在A,B,C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有多少种不同的跳法?【难度】【答案】6【解析】如图,第1步跳到,4步回到有3种方法;同样第1步到的也有3种方法根据加法原理,共有种方法【习题4】 小王在一年中去少年宫学习56次,如图所示,小王家在点,他去少年宫都是走最近的路,且每次去时所走的路线正好互不相同,那么少年宫在_点处【难度】【答案】B【解析】 【解析】本题属最短路线问题运用标数法分别计算出从小王家点到、点的不同路线有多少条,其中,路线条数与小王学习次数56相等的点即为少年宫因为,从小王家点到点共有不同

22、线路84条;到点共有不同线路56条;到点共有不同线路71条;到点共有不同线路15条;到点共有不同线路36条所以,少年宫在点处【习题5】 文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?【难度】【答案】12【解析】完成这件事需要两步:一步是从女生中选1人,有4种选法;另一步是从男生中选1人,有3种选法因此,由乘法原理,选出1男1女的方法有种 还可以用乘法的意义来理解这道题:男生有3种选法,每选定1个男生,再选1个女生,对应着4种选法,即3个男生,每个男生对应4种选女生的方法,因此选出1男1女共有种方法【习题6】 小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子

23、有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?【难度】【答案】2880.【解析】小丸子搭配服装分四步第一步选帽子,由于不戴帽子可以看作戴了顶空帽子,所以有种选法;第二步选上衣,有10种选法;第三步选裤子,有8种选法;第四步选皮鞋,有6种选法根据乘法原理,四种服装中各取一个搭配一共有种选法,所以一共可以组成2880种不同搭配【习题7】 北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?【难度】【答案】44【解析】京广线上一共有12个站,其中有四个大站

24、,卧铺车的起点可以有四种,不同的起点站都可以配11个不同的终点站,所以铁路局要准备411=44种不同的车票【习题8】 由3、6、9这3个数字可以组成多少个没有重复数字的三位数? 由3、6、9这3个数字可以组成多少个三位数?【难度】【答案】27【解析】分三步完成:第一步排百位上的数,有3种方法;第二步排十位上的数,有2种方法;第三步,排个位上的数,有1种方法,由乘法原理,3、6、9这3个数字可以组成个没有重复数字的三位数分三步完成,即分别排百位、十位、个位上的数字,每步有3种方法,由乘法原理,由3、6、9这3个数字一共可以组成个三位数【习题9】 一个三位数,如果它的每一位数字都不小于另一个三位数

25、对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉问:能吃掉678的三位数共有多少个?【难度】【答案】24【解析】即求百位数不小于6,十位数不小于7,个位不小于8的自然数百位数不小于6,有4种;十位数不小于7,有3种;个位不小于8,有2种由乘法原理,能吃掉678的三位数共有种【作业1】 阳光小学四年级有3个班,各班分别有男生18人、20人、16人从中任意选一人当升旗手,有多少种选法?【难度】【答案】54【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男

26、生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:种【作业2】 2007的数字和是2+0+0+7=9,问:大于2000小于3000的四位数中数字和等于9的数共有多少个?【难度】【答案】36【解析】大于2000小于3000的四位数千位数字是2,要它数字和为9,只需其余三位数字和是7因此,百位数字至多是7于是根据百位数进行分类:第一类,百位为7时,只有2700一个;第二类,百位为6时,只有2610,2601两个;第三类,百位为5时,只有2520,2511,2502三个;第四类,百位为4时,只有2430,2421,2412

27、,2403四个;第五类,百位为3时,只有2340,2331,2322,2313,2304五个;第六类,百位为2时,只有2250,2241,2232,2223,2214、2205六个;第七类,百位为1时,只有2160,2151,2142,2133,2124、2115、2106七个;第八类,百位为0时,只有2070,2061,2052,2043,2034、2025、2016、2007八个;根据加法原理,总计共个【作业3】 如图,用水平线或竖直线连结相邻汉字,沿着这些线读下去,正好可以读成“祖国明天更美好”,那么可读成“祖国明天更美好”的路线有 条.祖祖国祖祖国明国祖祖国明天明国祖祖国明天更天明国祖

28、祖国明天更美更天明国祖祖国明天更美好美更天明国祖【难度】【答案】127【解析】如图所示,利用加法原理,将读到各个字的路线数写在每个字下方,共有不同的路线(条).祖1祖1国3祖1祖1国2明7国2祖1祖1国2明4天15明4国2祖1祖1国2明4天8更31天8明4国2祖1祖1国2明4天8更16美63更16天8明4国2祖1祖1国2明4天8更16美32好127美32更16天8明4国2祖1【作业4】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?【难度】【答案】144【解析】 【解析】第一个月,有1对小兔子;第

29、二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加 依次类推可以列出下表: 经过月数:-1-2-3-4-5-6-7-8-9-10-11-12兔子对数:-1-1-2-3-5-8-13-21-34-55-89-144所以十二月份的时候总共有144对兔子【作业5】 10个人围成一圈,从中选出三个人,其中恰有

30、两人相邻,共有多少种不同选法?【难度】【答案】60【解析】两人相邻的情况有10种,第三个人不能与他们相邻,所以对于每一种来说,只剩6个人可选,106=60(种)共有60种不同的选法 【作业6】 用5种不同颜色的笔来写“昂立教育”这几个字,相邻的字颜色不同,共有多少种写法?【难度】【答案】320【解析】第一个字有5种写法,第二个字有4种写法,第三个字也是4种写法,同理后面的字也是4种写法,共有5444=320种【作业7】 国际象棋棋盘是88的方格网,下棋的双方各有16个棋子位于16个区格中,国际象棋中的“车”同中国象棋中的“车”一样都可以将位于同一条横行或竖行的对方棋子吃掉,如果棋局进行到某一时刻,下棋的双方都只剩下一个“车”,那么这两个“车”位置有多少种情况?【难度】【答案】3136【解析】对于如果只有一只“车”的情况,它可以有64种摆放位置,如果在棋盘中再加入一个“车”,那么它不能在原来那个“车”的同行或同列出现,他只能出现在其他七行七列,所以它只有77=49中摆放,所以这两个“车”的摆放位置有6449=3136种方法 23 / 23 23 / 23

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|