ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:1.65MB ,
文档编号:326429      下载积分:2 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-326429.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(田田田)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(20春九数下(RJ)26.2 第1课时 实际问题中的反比例函数 精品教学课件.ppt)为本站会员(田田田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

20春九数下(RJ)26.2 第1课时 实际问题中的反比例函数 精品教学课件.ppt

1、,26.2 实际问题与反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 实际问题中的反比例函数,九年级数学下(RJ) 教学课件,学习目标,1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力. 2. 能够通过分析实际问题中变量之间的关系,建立反 比例函数模型解决问题,进一步提高运用函数的图 象、性质的综合能力. (重点、难点) 3. 能够根据实际问题确定自变量的取值范围,导入新课,情境引入,请欣赏成都拉面小哥的“魔性”舞姿,拉面小哥舞姿妖娆,手艺更是精湛. 如果他要把体积为 15 cm3 的面团做成拉面,你能写出面条的总长度 y

2、 (单位:cm) 与面条粗细 (横截面积) S (单位:cm2)的函数关系式吗?,你还能举出我们在日常生活、生产或学习中具有反比例函数关系的量的实例吗?,例1 市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室. (1) 储存室的底面积 S (单位:m2) 与其深度 d (单位:m) 有怎样的函数关系?,讲授新课,解:根据圆柱体的体积公式,得 Sd =104,, S 关于d 的函数解析式为,典例精析,(2) 公司决定把储存室的底面积 S 定为 500 m2,施工队 施工时应该向下掘进多深?,解得 d = 20. 如果把储存室的底面积定为 500 m,施工时应 向地下掘进 20 m

3、深.,解:把 S = 500 代入 ,得,(3) 当施工队按 (2) 中的计划掘进到地下 15 m 时,公 司临时改变计划,把储存室的深度改为 15 m. 相 应地,储存室的底面积应改为多少 (结果保留小 数点后两位)?,解得 S666.67.,当储存室的深度为15 m 时,底面积应改为 666.67 m.,解:根据题意,把 d =15 代入 ,得,第 (2) 问和第 (3) 问与过去所学的解分式方 程和求代数式的值的问题有何联系?,第 (2) 问实际上是已知函数 S 的值,求自变量 d 的取值,第 (3) 问则是与第 (2) 问相反,想一想:,1. 矩形面积为 6,它的长 y 与宽 x 之间

4、的函数关系用 图象可表示为 ( ),B,练一练,A.,x,y,x,y,x,y,x,y,2. 如图,某玻璃器皿制造公司要制造一种容积为1升 (1升1立方分米)的圆锥形漏斗 (1) 漏斗口的面积 S (单位:dm2)与漏斗的深 d (单位: dm) 有怎样的函数关系?,解:,(2) 如果漏斗的深为10 cm,那么漏斗口 的面积为多少 dm2?,解:10cm=1dm,把 d =1 代入解析式,得 S =3. 所以漏斗口的面积为 3 dm2.,(3) 如果漏斗口的面积为 60 cm2,则漏斗的深为多少?,解:60 cm2 = 0.6 dm2,把 S =0.6 代入解析式,得 d =5. 所以漏斗的深为

5、 5 dm.,例2 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间. (1) 轮船到达目的地后开始卸货,平均卸货速度v (单位: 吨/天)与卸货天数 t 之间有怎样的函数关系?,提示:根据平均装货速度装货天数=货物的总量,可以求出轮船装载货物的总量;再根据平均卸货速度=货物的总量卸货天数,得到 v 关于 t 的函数解析式.,解:设轮船上的货物总量为 k 吨,根据已知条件得 k =308=240, 所以 v 关于 t 的函数解析式为,(2) 由于遇到紧急情况,要求船上的货物不超过 5天卸 载完毕,那么平均每天至少要卸载多少吨?,从结果可以看出,如果全部货物恰好用 5 天卸载 完

6、,则平均每天卸载 48 吨. 而观察求得的反比例 函数的解析式可知,t 越小,v 越大. 这样若货物 不超过 5 天卸载完,则平均每天至少要卸载 48 吨.,解:把 t =5 代入 ,得,练一练,某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把 1200 立方米的生活垃圾运走 (1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y 与 x 之间的函数关系式;,解:,(2) 若每辆拖拉机一天能运 12 立方米,则 5 辆这样的 拖拉机要用多少天才能运完?,解:x =125=60,代入函数解析式得,答:若每辆拖拉机一天能运 12 立方米,则 5 辆这样的拖拉机要用 20 天才能运完.

7、,(3) 在 (2) 的情况下,运了 8 天后,剩下的任务要在不 超过 6 天的时间内完成,那么至少需要增加多少 辆这样的拖拉机才能按时完成任务?,解:运了8天后剩余的垃圾有 1200860=720 (立方米), 剩下的任务要在不超过6天的时间完成,则每天 至少运 7206=120 (立方米), 所以需要的拖拉机数量是:12012=10 (辆), 即至少需要增加拖拉机105=5 (辆).,例3 一司机驾驶汽车从甲地去乙地,他以 80千米/时 的平均速度用 6 小时达到乙地. (1) 甲、乙两地相距多少千米?,解:806=480 (千米) 答:甲、乙两地相距 480 千米.,(2) 当他按原路匀

8、速返回时,汽车的速度 v 与时间 t 有怎样的函数关系?,解:由题意得 vt=480,,整理得 (t 0).,当堂练习,1. 面积为 2 的直角三角形一直角边为x,另一直角边 长为 y,则 y 与 x 的变化规律用图象可大致表示为 ( ),C,2. 体积为 20 cm3 的面团做成拉面,面条的总长度 y (单位:cm) 与面条粗细 (横截面积) S (单位:cm2) 的函数关系为 ,若要使拉出来的面 条粗 1 mm2,则面条的总长度是 cm.,2000,3. A、B两城市相距720千米,一列火车从A城去B城. (1) 火车的速度 v (千米/时) 和行驶的时间 t (时) 之间的函数关系是_

9、(2) 若到达目的地后,按原路匀速返回,并要求 在 3 小时内回到 A 城,则返回的速度不能低 于_,240千米/时,4. 学校锅炉旁建有一个储煤库,开学时购进一批煤, 现在知道:按每天用煤 0.6 吨计算,一学期 (按150 天计算) 刚好用完. 若每天的耗煤量为 x 吨,那么 这批煤能维持 y 天. (1) 则 y 与 x 之间有怎样的函数关系?,解:煤的总量为:0.6150=90 (吨),,根据题意有,(x0).,(2) 画出函数的图象;,解:如图所示.,(3) 若每天节约 0.1 吨,则这批煤能维持多少天?,解: 每天节约 0.1 吨煤, 每天的用煤量为 0.60.1=0.5 (吨),

10、 这批煤能维持 180 天,5. 王强家离工作单位的距离为3600 米,他每天骑自行 车上班时的速度为 v 米/分,所需时间为 t 分钟 (1) 速度 v 与时间 t 之间有怎样的函数关系?,解:,(2) 若王强到单位用 15 分钟,那么他骑车的平均速 度是多少?,解:把 t =15代入函数的解析式,得: 答:他骑车的平均速度是 240 米/分.,(3) 如果王强骑车的速度最快为 300 米/分,那他至少 需要几分钟到达单位?,解:把 v =300 代入函数解析式得: 解得:t =12 答:他至少需要 12 分钟到达单位,6. 在某村河治理工程施工过程中,某工程队接受一项 开挖水渠的工程,所需

11、天数 y (天) 与每天完成的工 程量 x (m/天) 的函数关系图象如图所示. (1) 请根据题意,求 y 与 x 之间的函数表达式;,解:,(2) 若该工程队有 2 台挖掘机,每台挖掘机每天能够 开挖水渠 15 m,问该工程队需用多少天才能完 成此项任务?,解:由图象可知共需开挖水渠 2450=1200 (m), 2 台挖掘机需要 1200(215)=40 (天).,(3) 如果为了防汛工作的紧急需要,必须在一个月内 (按 30 天计算)完成任务,那么每天至少要完成多 少 m?,解:120030=40 (m), 故每天至少要完成40 m,课堂小结,实际问题中的反比例函数,过程: 分析实际情境建立函数模型明确数学问题,注意: 实际问题中的两个变量往往都只能取非负值; 作实际问题中的函数图像时,横、纵坐标的单 位长度不一定相同,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|