ImageVerifierCode 换一换
格式:PPT , 页数:118 ,大小:5MB ,
文档编号:3303122      下载积分:29 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3303122.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(章表面物理化学课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

章表面物理化学课件.ppt

1、第十三章 表面物理化学13.1 表面张力及表面Gibbs自由能13.2 弯曲表面上的附加压力和蒸气压13.3 溶液的表面吸附13.4 液-液界面的性质13.5 膜13.6 液-固界面润湿作用13.7 表面活性剂及其作用13.8 固体表面的吸附13.9 气-固相表面催化反应一、表面和界面(surface and interface)界面是指两相接触的约几个分子厚度的过渡区,若其中一相为气体,这种界面通常称为表面。常见的界面有:气-液界面,气-固界面,液-液界面,液-固界面,固-固界面。严格讲表面应是液体和固体与其饱和蒸气之间的界面,但习惯上把液体或固体与空气的界面称为液体或固体的表面。1.气-液

2、界面空气空气4CuSO溶液气气-液液界面界面2.气-固界面气气-固界面固界面3.液-液界面2H OHg液-液界面玻璃板玻璃板Hg2H O液液-固界面固界面4.液-固界面5.固-固界面铁管铁管CrCr镀层镀层固固-固界面固界面二、界面现象的本质 对于单组分系统,这种特性主要来自于同一物质在不同相中的密度不同;对于多组分系统,则特性来自于界面层的组成与任一相的组成均不相同。表面层分子与内部分子相比所处的环境不同 体相内部分子所受四周邻近相同分子的作用力是对称的,各个方向的力彼此抵消。但是处在界面层的分子,一方面受到体相内相同物质分子的作用,另一方面受到性质不同的另一相中物质分子的作用,其作用力未必

3、能相互抵销,因此,界面层会显示出一些独特的性质。最简单的例子是液体及其蒸气组成的表面。液体内部分子所受的力可以彼此抵消,但表面分子受到体相分子的拉力大,受到气相分子的拉力小(因为气相密度低),所以表面分子受到被拉入体相的作用力。这种作用力使表面有自动收缩到最小的趋势,并使表面层显示出一些独特性质,如表面张力、表面吸附、毛细现象、过饱和状态等。三、比表面(specific surface area)比表面通常用来表示物质分散的程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积;另一种是单位体积固体所具有的表面积。即:ss00 AAAAmV或式中,m 和 V 分别为固体的质量和体积,A

4、s为其表面积。目前常用的测定表面积的方法有BET法和色谱法。分散度与比表面的关系 把物质分散成细小微粒的程度称为分散度。把一定大小的物质分割得越小,则分散度越高,比表面也越大。例如,把边长为1 cm的立方体1 cm3,逐渐分割成小立方体时,比表面将以几何级数增长。分散程度越高,比表面越大,表面能也越高。可见达到nm级的超细微粒,具有巨大的比表面积,因而具有许多独特的表面效应,成为新材料和多相催化方面的研究热点。13.1 表面张力及表面Gibbs自由能表面张力表面热力学的基本公式界面张力与温度的关系溶液的表面张力与溶液浓度的关系2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2

5、 l2 l2 l2 l2 l2 l2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2W1W2 l12=()FWW g=一、表面张力(surface tension)1、液膜自动收缩的实验 由于表面层分子的受力不均衡,液滴趋向于呈球形,水银珠和荷叶上的水珠也收缩为球形。液体表面的最基本的特性是趋向于收缩。由于金属框上的肥皂膜的表面张力作用,可滑动的边会被向上拉,直至顶部。液膜自动收缩的实验,证实了表面张力的存在。2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2 l2W2

6、l2W 如果在活动边框上挂一重物,使重物质量W2与边框质量W1所产生的重力F与总的表面张力大小相等方向相反,则金属丝不再滑动。这时 2Fl l 是滑动边的长度,因膜有两个面,所以边界总长度为2l,就是作用于单位边界上的表面张力。2W1W2 l12=()FWW g=2、表面张力-力 在两相(特别是气-液)界面上,处处存在着一种张力,这种力垂直与表面的边界,指向液体方向并与表面相切。把作用于单位边界线上的这种力称为表面张力,用 或 表示。表面张力的单位是:1N m3、表面张力-比表面Gibbs自由能sdWA 表面张力也可以这样来理解。温度、压力和组成恒定时,可逆使表面积增加dA所需要对系统作的非体

7、积功,称为表面功。用公式表示为:式中 为比例系数,它在数值上等于当T,p 及组成恒定的条件下,增加单位表面积时所必须对系统做的可逆非膨胀功。4、测定表面张力方法 毛细管上升法、滴重法、吊环法、最大压力气泡法、吊片法和静液法等。二、表面热力学的基本公式考虑了表面功的热力学基本公式为sBBBdddddUT Sp VAnsBBBdddddHT SV pAnsBBBdddddAS Tp VAn sBBBdddddGS TV pAn 从这些热力学基本公式可得BBBBss,ssS V nS p nT V nT p nUHAGAAAA表面自由能(surface free energy)广义的表面自由能定义:

8、B,s()S V nUAB,s()S p nHAB,s()T V nAAB,s()T p nGA 狭义的表面自由能定义:B,s()T p nGA又可称为表面Gibbs自由能 表面自由能的单位:2J m三、影响界面张力的因素1,2121、纯物质的表面张力与分子的性质有关,通常是 Antonoff 发现,两种液体之间的界面张力是两种液体互相饱和时的表面张力之差,即 水因为有氢键,所以表面张力也比较大。(金属键)(离子键)(极性共价键)(非极性共价键)这个经验规律称为 Antonoff 规则。2、温度对界面张力的影响 温度升高,界面张力下降,当达到临界温度Tc时,界面张力趋向于零。这可用热力学公式说

9、明:BBBdddddGS TV PAn 因为运用全微分的性质,可得:sBB,s,A V nT V nSAT 等式左方为正值,因为表面积增加,熵总是增加的。所以 随T的增加而下降。sBB,s,A p nT p nSAT 2 3mc 6.0Vk TT Ramsay 和 Shields 提出的 与T的经验式较常用:2 3mc Vk TT Etvs(约特弗斯)曾提出温度与表面张力的关系式为3、溶液的表面张力与溶液浓度的关系非表面活性物质 水的表面张力因加入溶质形成溶液而改变。能使水的表面张力明显升高的溶质称为非表面活性物质。如无机盐和不挥发的酸、碱等。这些物质的离子有较强的水合作用,趋向于把水分子拖入

10、水中,非表面活性物质在表面的浓度低于在本体的浓度。如果要增加单位表面积,所做的功中还必须包括克服静电引力所消耗的功,所以表面张力升高。3、溶液的表面张力与溶液浓度的关系表面活性物质 加入后能使水的表面张力明显降低的溶质称为表面活性物质。这种物质通常含有亲水的极性基团和憎水的非极性碳链或碳环有机化合物。亲水基团进入水中,憎水基团企图离开水而移向空气,在界面定向排列。表面活性物质的表面浓度大于本体浓度,增加单位面积所需的功较纯水小。非极性成分愈大,表面活性也愈大。Traube 规则 Traube研究发现,同一种溶质在低浓度时表面张力的降低与浓度成正比。表面活性物质的浓度对溶液表面张力的影响,可以从

11、 曲线中直接看出。c甲酸乙酸丙酸丁酸戊酸3550650.180.360.543/(mol dm)c 不同的酸在相同的浓度时,每增加一个CH2,其表面张力降低效应平均可增加约3.2倍。稀溶液的 曲线的三种类型 c曲线 cO非离子型有机物 d0dc曲线 非表面活性物质 d0dc曲线 表面活性剂 d0dc13.2 弯曲表面上的附加压力和蒸气压 弯曲表面上的附加压力弯曲表面上的蒸气压Kelvin 公式一、弯曲表面上的附加压力1.在平面上 对一小面积AB,沿AB的四周每点的两边都存在表面张力,大小相等,方向相反,所以没有附加压力。设向下的大气压力为p0,向上的反作用力也为p0,附加压力ps等于零。s00

12、0ppp0pABff0p 一、弯曲表面上的附加压力2.在凸面上 由于液面是弯曲的,则沿AB的周界上的表面张力不是水平的,作用于边界的力将有一指向液体内部的合力。0sppp总0pABff0sppsp 所有的点产生的合力和为 ps,称为附加压力。凸面上受的总压力为:一、弯曲表面上的附加压力3.在凹面上 由于液面是凹面,沿AB的周界上的表面张力不能抵消,作用于边界的力有一指向凹面中心的合力。0sppp总0pABff0sppsp 所有的点产生的合力和为 ps,称为附加压力凹面上受的总压力为:一、弯曲表面上的附加压力 由于表面张力的作用,在弯曲表面下的液体与平面不同,它受到一种附加的压力,附加压力的方向

13、都指向曲面的圆心。凹面上受的总压力小于平面上的压力。凸面上受的总压力大于平面上的压力。4、附加压力的大小与曲率半径有关 例如,在毛细管内充满液体,管端有半径为R 的球状液滴与之平衡。外压为 p0,附加压力为 ps,液滴所受总压为:0sppp总0pspR 对活塞稍加压力,将毛细管内液体压出少许相应地其表面积增加dA使液滴体积增加dV克服附加压力ps所做的功等于可逆增加表面积的Gibbs自由能ssddp VA0pspRssddp VAs2pR34 3VR代入2s4AR2 d4dVRRsd8dAR Rssddp VA得 凸面上因外压与附加压力的方向一致,液体所受的总压等于外压和附加压力之和,总压比平

14、面上大。相当于曲率半径取了正值。曲率半径越小,附加压力越大。s2pR0sppp总 凹面上因外压与附加压力的方向相反,液体所受的总压等于外压和附加压力之差,总压比平面上小。相当于曲率半径取了负值。0sppp总 1.假若液滴具有不规则的形状,则在表面上的不同部位曲面弯曲方向及其曲率不同,所具的附加压力的方向和大小也不同,这种不平衡的力,必将迫使液滴呈现球形。自由液滴或气泡通常为何都呈球形?2.相同体积的物质,球形的表面积最小,则表面总的Gibbs自由能最低,所以变成球状就最稳定。5、毛细管现象 由于附加压力而引起的液面与管外液面有高度差的现象称为毛细管现象。把毛细管插入水中,管中的水柱表面会呈凹形

15、曲面,致使水柱上升到一定高度。当插入汞中时,管内汞面呈凸形,管内汞面下降。MN0ppp2H OHg毛细管现象 毛细管内液柱上升(或下降)的高度可近似用如下的方法计算 s2ppghR lg当lgl2hRg曲率半径 R 与毛细管半径R的关系:如果曲面为球面cosRRslg2()pghR2ghR s2 cospghR R=R二、弯曲表面上的蒸气压Kelvin公式vap10G0022ms0s2d()pRpMGVpAAAR0r4r0lnlnppGRTRTpp 2340GGGr02lnpMRTpR这就是Kelvin公式vap3sGA 二、弯曲表面上的蒸气压Kelvin公式r0s pppp 设r02lnpM

16、RTpRr001pppp 当 很小时0ppr000lnln 1pppppp代入上式,得这是Kelvin公式的简化式02pMpRTR表明液滴越小,蒸气压越大 1、r02lnpMRTpR02pMpRTR Kelvin公式也可以表示为两种不同曲率半径的液滴或蒸气泡的蒸气压之比2121211lnpMRTpRR对凸面,R 取正值,R 越小,液滴的蒸气压越高;对凹面,R 取负值,R 越小,小蒸气泡中的蒸气压越低。解释以下原理:(1)人工降雨(2)蒸馏瓶中加沸石防暴沸r02lnpMRTpR02pMpRTR2121211lnpMRTpRR 2、Kelvin公式也可以表示两种不同大小颗粒的饱和溶液浓度之比。s2

17、121211lnlMcRTcRR 颗粒总是凸面,R 取正值,R 越小,小颗粒的饱和溶液的浓度越大,溶解度越大。3、毛细管凝聚 固体吸附剂和催化剂都具有大量的孔腔或孔道,如果被吸附的物质能润湿这种固体,则在孔道中形成凹面,由于凹面上的附加压力使蒸气压小于平面上的蒸气压.即在相同温度下,平面上的蒸气尚未达到饱和时,在凹面上的蒸气已经达到饱和,成为液体凝聚下来,这种现象称为毛细管凝聚.毛细管凝聚现象会造成气体吸附量偏高,比表面测定不准确.思考:孔腔或孔道半径越小,毛细管凝聚现象越怎样?实际中的毛细管现象 参天大树正是依靠树皮中的无数毛细管将土壤中的水和养分源源不断地输送到树冠(当然渗透压也起了重要作

18、用,由于树中有盐分,地下水会因渗透压进入树中,通过毛细管上升).植物依靠土壤中的毛细管吸取地下水分,如果大雨过后,土壤压实了,毛细管与地表相通,就会把地下水白白蒸发掉,不久会使植物枯萎.所以,必须把地表锄松,切断地表的毛细管,保护地下水不被蒸发以供植物慢慢使用.而地表松土中的毛细管又可以使大气中的水气在管中凝聚,增加土壤水分,这就是锄地保墒的道理.13.3 溶液的表面吸附溶液的表面吸附Gibbs 吸附公式*Gibbs 吸附等温式的推导溶液表面吸附Gibbs吸附公式 溶液貌似均匀,实际上表面相的浓度与本体不同,把物质在表面上富集的现象称为表面吸附。表面浓度与本体浓度的差别,称为表面过剩,或表面超

19、量。溶液降低表面自由能的方法除了尽可能地缩小表面积外,还可调节不同组分在表面层中的数量。若加入的溶质能降低表面张力,则溶质力图浓集在表面层上;当溶质使表面张力升高时,则它在表面层中的浓度比在内部的浓度来得低。Gibbs吸附公式 Gibbs用热力学方法求得定温下溶液的浓度、表面张力和吸附量之间的定量关系式 222ddcRTc 1.d/dc20,增加溶质2的浓度使表面张力升高,G2为负值,是负吸附。表面层中溶质浓度低于本体浓度。非表面活性物质属于这种情况。Gibbs吸附公式它的物理意义是:在单位面积的表面层中,所含溶质的物质的量与具有相同数量溶剂的本体溶液中所含溶质的物质的量之差值。即:222dd

20、aRTa 0021212(/)nn nnA 式中G2是溶剂超量为零时溶质2在表面的超额。a2是溶质2的活度,d/da2是在等温下,表面张力 随溶质活度的变化率。13.4 液-液界面的性质液-液界面的铺展单分子表面膜不溶性的表面膜表面压不溶性表面膜的一些应用13.4 液-液界面的性质 一种液体能否在另一种不互溶的液体上铺展,取决于两种液体本身的表面张力和两种液体之间的界面张力。一般说,铺展后,表面自由能下降,则这种铺展是自发的。大多数表面自由能较低的有机物可以在表面自由能较高的水面上铺展。一、液-液界面的铺展 设液体1,2和气体间的界面张力分别为1,g,2,g和1,2 在三相接界点处,1,g和1

21、,2企图维持液体1不铺展,而2,g的作用是使液体铺展。121,g2,g1,2 如果2,g(1,g+1,2),则液体1能在液体2上铺展,反之,则液体1不能在液体2上铺展。二、单分子表面膜不溶性的表面膜 两亲分子具有表面活性,溶解在水中的两亲分子可以在界面上自动相对集中而形成定向的吸附层(亲水的一端在水层)并降低水的表面张力。1765年Franklin就曾用油滴铺展到水面上,得到厚度约为2.5 nm的很薄油层。二、单分子表面膜不溶性的表面膜 又有人发现某些难溶物质铺展在液体的表面上所形成的膜,确实是只有一个分子的厚度,所以这种膜就被称为单分子层表面膜。制备时要选择适当的溶剂,如对成膜材料有足够的溶

22、解能力,在底液上又有很好的铺展能力,其相对密度要低于底液,且易于挥发等。成膜材料一般是:(1)两亲分子,带有比较大的疏水基团;(2)天然的和合成的高分子化合物。三、表面压0式中 称为表面压,0为纯水的表面张力,为溶液的表面张力。由于0,所以液面上的浮片总是推向纯水一边。由实验可以证实表面压的存在。在纯水表面放一很薄的浮片,在浮片的一边滴油,由于油滴在水面上铺展,会推动浮片移向纯水一边,把对单位长度浮片的推动力称为表面压。1917年Langmuir设计了直接测定表面压的仪器。Langmuir膜天平 图中K为盛满水的浅盘,AA是云母片,悬挂在一根与扭力天平刻度盘相连的钢丝上,AA的两端用极薄的铂箔

23、与浅盘相连。XX是可移动的边,用来清扫水面,或围住表面膜,使它具有一定的表面积。在XXAA面积内滴加油滴,油铺展时,用扭力天平测出它施加在AA边上的压力。这种膜天平的准确度可达110-5N/m。四、不溶性表面膜的一些应用(1)降低水蒸发的速度(2)测定蛋白质分子的摩尔质量 RTcMc 是单位表面上蛋白质的质量(3)使化学反应的平衡位置发生移动 测定膜电势可以推测分子在膜上是如何排列的,可以了解表面上的分布是否均匀等等。13.6 液-固界面润湿作用润湿过程及分类接触角与润湿方程一、润湿过程及分类 润湿过程可以分为三类,即:粘湿、浸湿和铺展 滴在固体表面上的少许液体,取代了部分固-气界面,产生了新

24、的液-固界面。这一过程称之为润湿过程。1、粘湿过程 液体与固体从不接触到接触,使部分液-气界面和固-气界面转变成新的固-液界面的过程。液固g lg sl s 设各相界面都是单位面积,该过程的Gibbs自由能变化值为:l-sl-gs-gGal-sl-gs-gWG 称为粘湿功。aW 粘湿功的绝对值愈大,液体愈容易粘湿固体,界面粘得愈牢。二、浸湿过程该过程的Gibbs自由能的变化值为:在恒温恒压可逆情况下,将具有单位表面积的固体浸入液体中,气-固界面转变为液-固界面的过程称为浸湿过程。l sg siGW 称为浸湿功,它是液体在固体表面上取代气体能力的一种量度,有时也被用来表示对抗液体表面收缩而产生的

25、浸湿能力,故又称为粘附张力。iW液体能浸湿固体。0iW 固体浸湿过程示意图气液固固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固体浸湿过程示意图气液固g-sl-s三、铺展过程 等温、等压条件下,单位面积的液固界面取代了单位面积的气固界面并产生了单位面积的气液界面,这种过程称为铺展过程。l sg lg sG S 称为铺展系数,若S0,说明液体可以在固体表面自动铺展。等温、等压条件下,可逆铺展单位面积时,Gibbs自由能的变化值为g sg ll sSG 铺展过程固液气a固液气a固液气a固液气a固液气a固液气a固液气a固液气a固液气a固

26、液气a固液气a固液气ab液体在固体表面上的铺展1、接触角 在气、液、固三相交界点,气-液与液-固界面张力之间的夹角称为接触角,通常用表示。2、接触角与润湿方程g-ls-lg-scos 若接触角大于90,说明液体不能润湿固体,如汞在玻璃表面;若接触角小于90,液体能润湿固体,如水在洁净的玻璃表面。接触角的大小可以用实验测量,也可以用公式计算ag l(1 cos)W 可以利用实验测定的接触角和气-液界面张力,计算润湿过程的一些参数ig lcosW g l(cos1)S 能被液体所润湿的固体,称为亲液性的固体,常见的液体是水,所以极性固体皆为亲水性固体。不被液体所润湿者,称为憎液性的固体。非极性固体

27、大多为憎水性固体。13.7 表面活性剂及其作用表面活性剂分类表面活性剂的一些重要作用及其应用一、表面活性剂的分类 表面活性剂通常采用按化学结构来分类,分为离子型和非离子型两大类,离子型中又可分为阳离子型、阴离子型和两性型表面活性剂。1.离子型2.非离子型表面活性剂 显然阳离子型和阴离子型的表面活性剂不能混用,否则可能会发生沉淀而失去活性作用。阳离子型阴离子型两性型小极性头大极性头二、表面活性剂的一些重要作用及其应用表面活性剂的用途极广,主要有五个方面:1.润湿作用 首先将粗矿磨碎,倾入浮选池中。在池水中加入捕集剂和起泡剂等表面活性剂。搅拌并从池底鼓气,带有有效矿粉的气泡聚集表面,收集并灭泡浓缩

28、,从而达到了富集的目的。不含矿石的泥砂、岩石留在池底,定时清除。浮游选矿泡泡水矿物浮游选矿的原理图 选择合适的捕集剂,使它的亲水基团只吸在矿砂的表面,憎水基朝向水。当矿砂表面有5%被捕集剂覆盖时,就使表面产生憎水性,它会附在气泡上一起升到液面,便于收集。有用矿物废矿石憎水表面2.起泡作用 “泡”就是由液体薄膜包围着气体。有的表面活性剂和水可以形成一定强度的薄膜,包围着空气而形成泡沫,用于浮游选矿、泡沫灭火和洗涤去污等,这种活性剂称为起泡剂。有时要使用消泡剂,在制糖、制中药过程中泡沫太多,要加入适当的表面活性剂降低薄膜强度,消除气泡,防止事故。起泡剂所起的主要作用有:(1)降低表面张力;(2)使

29、泡沫膜牢固,有一定的机械强度和弹性;(3)使泡沫有适当的表面黏度。3.增溶作用 非极性有机物如苯在水中溶解度很小,加入油酸钠等表面活性剂后,苯在水中的溶解度大大增加,这称为增溶作用。增溶作用与普通的溶解概念是不同的,增溶的苯不是均匀分散在水中,而是分散在油酸根分子形成的胶束中。经X射线衍射证实,增溶后各种胶束都有不同程度的增大,而整个溶液的的依数性变化不大。增溶作用的特点 (1)增溶作用可以使被溶物的化学势大大降低,是自发过程,使整个系统更加稳定。(2)增溶作用是一个可逆的平衡过程。(3)增溶后不存在两相,溶液是透明的。增溶作用的应用极为广泛,例如,增溶作用是去污作用中很重要的一部分,工业上合

30、成丁苯橡胶时,利用增溶作用将原料溶于肥皂溶液中再进行聚合反应(即乳化聚合),还可以应用于染色、农药以增加农药杀虫灭菌的功能以及在医药和生理现象等方面。4.乳化作用 一种或几种液体以大于10-7 m直径的液珠分散在另一不相混溶的液体之中形成的粗分散系统称为乳状液。要使它稳定存在必须加乳化剂。根据乳化剂结构的不同可以形成以水为连续相的水包油乳状液(O/W),或以油为连续相的油包水乳状液(W/O)。有时为了破坏乳状液需加入另一种表面活性剂,称为破乳剂,将乳状液中的分散相和分散介质分开。例如原油中需要加入破乳剂将油与水分开。简单的乳状液通常分为两大类。习惯上将不溶于水的有机物称油,将不连续以液珠形式存

31、在的相称为内相,将连续存在的液相称为外相。1.水包油乳状液2.油包水乳状液 用O/W表示。内相为油,外相为水,这种乳状液能用水稀释,如牛奶等。用W/O表示。内相为水,外相为油,如油井中喷出的原油。检验水包油乳状液加入水溶性染料如亚甲基蓝,说明水是连续相。加入油溶性的染料红色苏丹,说明油是不连续相。5.洗涤作用 肥皂是用动、植物油脂和NaOH或KOH皂化而制得 肥皂在酸性溶液中会形成不溶性脂肪酸,在硬水中会与钙、镁等离子生成不溶性的脂肪酸盐,不但降低了去污性能,而且污染了织物表面。用烷基硫酸盐、烷基芳基磺酸盐及聚氧乙烯型非离子表面活性剂等作原料制成的合成洗涤剂去污能力比肥皂强,且克服了肥皂的如上

32、所述的缺点。去污过程是带有污垢(用D表示)的固体(s),浸入水(w)中,在洗涤剂的作用下,降低污垢与固体表面的粘湿功,使污垢脱落而达到去污目的。好的洗涤剂必须具有:(1)良好的润湿性能;(2)能有效的降低被清洗固体与水及污垢与水的界面张力,降低粘湿功;(3)有一定的起泡或增溶作用;(4)能在洁净固体表面形成保护膜而防止污物重新沉积。13.8 固体表面的吸附吸附现象的本质化学吸附和物理吸附固体表面的特点吸附等温线Langmuir等温式Freundlich等温式 BET多层吸附公式T方程式化学吸附热影响气-固界面吸附的主要因素混合气体的Langmuir吸附等温式一、固体表面的特点 固体表面上的原子

33、或分子与液体一样,受力也是不均匀的,所以固体表面也有表面张力和表面能 固体表面的特点是:1固体表面分子(原子)移动困难,只能靠吸附来降低表面能。2固体表面是不均匀的,不同类型的原子的化学行为、吸附热、催化活性和表面态能级的分布都是不均匀的。3固体表面层的组成与体相内部组成不同。固体表面的特点固体的表面结构平台附加原子台阶附加原子扭结原子单原子台阶平台空位二、吸附等温线 当气体或蒸气在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。常用的吸附剂有:硅胶、分子筛、活性炭等。为了测定固体的比表面,常用的吸附质有:氮气、水蒸气、苯或环己烷的蒸气等。1、吸附剂和吸附质2、吸附量的表示 吸附量通

34、常有两种表示方法:31 m gVqm单位:(2)单位质量的吸附剂所吸附气体物质的量1 mol g nqm单位:(1)单位质量的吸附剂所吸附气体的体积体积要换算成标准状况(STP)3、吸附量与温度、压力的关系 对于一定的吸附剂与吸附质的系统,达到吸附平衡时,吸附量是温度和吸附质压力的函数,即:通常固定一个变量,求出另外两个变量之间的关系,例如:(,)qf T p(1)T=常数,q=f(p),称为吸附等温式(2)p=常数,q=f(T),称为吸附等压式(3)q=常数,p=f(T),称为吸附等量式4、吸附等温线的类型 从吸附等温线可以反映出吸附剂的表面性质、孔分布以及吸附剂与吸附质之间的相互作用等有关

35、信息。常见的吸附等温线有如下5种类型:(图中p/ps称为比压,ps是吸附质在该温度时的饱和蒸气压,p为吸附质的压力)。4、吸附等温线的类型adV1.0/sp p()在2.5 nm 以下微孔吸附剂上的吸附等温线属于这种类型。例如78 K时 N2 在活性炭上的吸附及水和苯蒸气在分子筛上的吸附。4、吸附等温线的类型adV1.0/sp p()常称为S型等温线。吸附剂孔径大小不一,发生多分子层吸附。在比压接近1时,发生毛细管凝聚现象。4、吸附等温线的类型adV1.0/sp p()这种类型较少见。当吸附剂和吸附质相互作用很弱时会出现这种等温线。如 352 K 时,Br2在硅胶上的吸附属于这种类型。4、吸附

36、等温线的类型adV1.0/sp p()多孔吸附剂发生多分子层吸附时会有这种等温线。在比压较高时,有毛细凝聚现象。例如在323 K时,苯在氧化铁凝胶上的吸附属于这种类型。O4、吸附等温线的类型adV1.0/sp p()发生多分子层吸附,有毛细凝聚现象。例如373 K时,水汽在活性炭上的吸附属于这种类型。O三、Langmuir吸附等温式 Langmuir吸附等温式描述了吸附量与被吸附蒸气压力之间的定量关系。他在推导该公式的过程引入了两个重要假设:(1)吸附是单分子层的;(2)固体表面是均匀的,被吸附分子之间无相互作用。设:表面覆盖率=V/Vm Vm为吸满单分子层的体积则空白表面为(1-)V为吸附体

37、积Langmuir吸附等温式达到平衡时,吸附与解吸速率相等。吸附速率为aa(1)rk p脱附速率为ddrkad1k pkadak pkk p令:adkak1apap 这公式称为 Langmuir吸附等温式,式中a 称为吸附平衡常数(或吸附系数),它的大小代表了固体表面吸附气体能力的强弱程度。1apap以 对p 作图,得:papLangmuir等温式的示意图11.当p很小,或吸附很弱,ap1,=1,与 p无关,吸附已铺满单分子层。3.当压力适中,pm,m介于0与1之间。1mapaappO3-1m/(22.4dmmol)(STP)nVm为吸附剂质量重排后可得:这是Langmuir吸附公式的又一表示

38、形式。用实验数据,以p/V-p作图得一直线,从斜率和截距求出吸附系数a和铺满单分子层的气体体积Vm。将=V/Vm代入Langmuir吸附公式1apap Vm是一个重要参数。从吸附质分子截面积Am,可计算吸附剂的总表面积S和比表面A。mSA Ln/AS mm1VapVapmm1ppVV aV吸附系数随温度和吸附热的变化关系为 Q为吸附热,取号惯例为放热吸附热为正值,吸热吸附热为负值。2aa1rk p0expQaaRT当吸附热为负值时,温度升高,吸附量下降对于一个吸附质分子吸附时解离成两个粒子的吸附2ddrk达吸附平衡时adrr或1 21 21ap在压力很小时1/21/21 21/21/apap1

39、1221a p 1122a p如果p表示吸附时发生了解离 混合气体的Langmuir吸附等温式当A和B两种粒子都被吸附时,A和B分子的吸附与解吸速率分别为:A1-dBAA1a)1(krpkrB1dBAB1a)1(krpkr达吸附平衡时,ra=rdABAA1apBBAB1pa两式联立解得A,B分别为:BAAA1paapapBBAB1a papa p对多种气体混合吸附的Lngmuir吸附等温式为:BBBBBB1a pa p气体B的存在可使气体A的吸附受到阻抑,反之亦然 Lngmuir吸附等温式在吸附理论中起了一定的作用,但它的单分子层吸附、表面均匀等假设并不完全与事实相符,是吸附的理想情况。Fre

40、undlich 等温式Freundlich吸附等温式有两种表示形式:/nkpq1 )1(q:吸附量,cm3/gk,n是与温度、系统有关的常数。/npkmx1 )2(x:吸附气体的质量m:吸附剂质量k,n是与温度、系统有关的常数。Freundlich吸附公式对 的适用范围比Langmuir公式要宽,适用于物理吸附、化学吸附和溶液吸附。CO在炭上的吸附1/nqkp1lglglgqkpnlglgqp作图得一直线1.01.52.00.500.51.01.5273 K195 K240 K293 K320 Klg plg qBET多层吸附公式 由Brunauer-Emmett-Teller三人提出的多分子

41、层吸附公式简称BET公式。他们接受了Langmuir理论中关于固体表面是均匀的观点,但他们认为吸附是多分子层的。当然第一层吸附与第二层吸附不同,因为相互作用的对象不同,因而吸附热也不同,第二层及以后各层的吸附热接近与凝聚热。在这个基础上他们导出了BET吸附二常数公式。BET多层吸附公式/)1(1)(ssmppcppcpVV 式中两个常数为c和Vm,c是与吸附热有关的常数,Vm为铺满单分子层所需气体的体积。p和V分别为吸附时的压力和体积,ps是实验温度下吸附质的饱和蒸气压。BET公式主要应用于测定固体催化剂的比表面。吸附现象的本质物理吸附和化学吸附具有如下特点的吸附称为物理吸附:1.吸附力是由固

42、体和气体分子之间的van der Waals引力产生的,一般比较弱。2.吸附热较小,接近于气体的液化热,一般在几个 kJ/mol以下。3.吸附无选择性,任何固体可以吸附任何气体,当 然吸附量会有所不同。4.吸附稳定性不高,吸附与解吸速率都很快5.吸附可以是单分子层的,但也可以是多分子层的6.吸附不需要活化能,吸附速率并不因温度的升高而变快。总之:物理吸附仅仅是一种物理作用,没有电子转移,没有化学键的生成与破坏,也没有原子重排等。具有如下特点的吸附称为化学吸附:1.吸附力是由吸附剂与吸附质分子之间产生的化学键力,一般较强。2.吸附热较高,接近于化学反应热,一般在42kJ/mol以上。3.吸附有选

43、择性,固体表面的活性位只吸附与之可发生反应的气体分子,如酸位吸附碱性分子,反之亦然。4.吸附很稳定,一旦吸附,就不易解吸。5.吸附是单分子层的。6.吸附需要活化能,温度升高,吸附和解吸速率加快。总之:化学吸附相当与吸附剂表面分子与吸附质分子发生了化学反应,在红外、紫外-可见光谱中会出现新的特征吸收带。化学吸附热 吸附热的定义:吸附热的取号:在吸附过程中的热效应称为吸附热。物理吸附过程的热效应相当于气体凝聚热,很小;化学吸附过程的热效应相当于化学键能,比较大。吸附是放热过程,但是习惯把吸附热都取成正值 固体在等温、等压下吸附气体是一个自发过程,G0,气体从三维运动变成吸附态的二维运动,熵减少,S0,H=G+TS,H0。影响气-固界面吸附的主要因素 影响气-固界面吸附的主要因素有:温度、压力以及吸附剂和吸附质的性质。无论物理吸附还是化学吸附,温度升高时吸附量减少,压力增加,吸附量和吸附速率皆增大。极性吸附剂易于吸附极性吸附质,非极性吸附剂则易于吸附非极性物质。吸附质分子的结构越复杂,沸点越高,被吸附的能力越强。酸性吸附剂易吸附碱性吸附质,反之亦然。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|