ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:273.07KB ,
文档编号:3317789      下载积分:7 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3317789.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(南京市2023届高三年级学情调研(7月预演)答案解析.pdf)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

南京市2023届高三年级学情调研(7月预演)答案解析.pdf

1、 1 南京市 2023 届高三年级学情调研(7 月预演)数学注意事项:1本试卷考试时间为 120 分钟,试卷满分 150 分,考试形式闭卷2本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分3答题前,务必将自己的姓名、准考证号填写在试卷及答题卡上一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 若|1iz|34i|,则|zi|A2B3C4D5【答案】D【解析】|zi|1iz|34i|52 若集合 UN*,MxN*|ytan2x,Ny|yx4x,12x4,则(UM)NA5,7B4,5,6,7C4,8D4,172【答案】A【解

2、析】因为UMx|x2k1,kN,N4,172,所以(UM)N5,73 在ABC 中,记CAm,CBn,则AB(CACB)AmnBmnCn2m2Dm2n2【答案】C【解析】因为ABCBCAnm,所以AB(CACB)(nm)(nm)n2m24 在ABC 中,AB 5,AC 2,BC3则以 BC 为轴,将ABC 旋转一周所得的几何体的体积为A3B23CD43【答案】C 2【解析】由图形易知 BC 边上的高为 1,所以 V13Sh1335 从 1 至 8 的 8 个整数中随机抽取 2 个不同的数,则这 2 个数和为偶数的概率为A1114B514C47D37【答案】D【解析】p12C28376 已知函数

3、 f(x)sin(x9)sin(59x),g(x)f(f(x),则 g(x)的最大值为A 2B 3C32D2【答案】B【解析】记 tx9,则 f(x)h(t)sintsin(t3)32sint32cost,所以 h(t)3sin(t6)3,3,且 33,所以 f(f(x)最大为 37 双曲线 C:x2a2y21(a0)的左、右焦点分别为 F1,F2,A 为 C 左支上一动点,直线AF2与 C 的右支交于点 B,且|AB|3a,ABF1与BF1F2的周长相等,则|F1F2|A2 33B4 33C23D43【答案】B【解析】记 C 的焦距为 2c,则|F1F2|2c2 a21,又ABF1与BF1F

4、2的周长相等,即|AB|AF1|F1F2|BF2|,又|AB|3a,且|AB|BF2|AF1|2a,即 2a a21,a213,所以|F1F2|2 a214 338 若函数 f(x),g(x)的定义域为 R,且f(x)g(x)g(x2)f(x2),f(2022)g(2024)2,则 23k0f(2k)g(2k2)A28B30C46D48【答案】B【解析】因为f(x)g(x)g(x2)f(x2),所以f(x)g(x2)f(x2)g(x)1,记 h(x)f(x)g(x2),所以 h(x)h(x2)1,h(x2)h(x)1,则 h(x)h(x4),3 所以 h(2k)h(2(k2),f(2022)g

5、(2024)f(2)g(4)2,且 f(2)f(0)g(2)g(4),则f(0)g(2)12,所以 23k0f(2k)g(2k2)(122)1230二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分。9 在平面直角坐标系 xOy 中,已知直线 l:xayb1 与 x 轴交于点 A,与 y 轴交于点 B,圆C:x2y2axbyc0,则A若 c0,则点 O 在圆 C 上B直线 l 与坐标轴围成的三角形的面积为ab2C若点 O 在圆 C 内部,则 c 的取值范围为(0,)D若 abc83

6、,则圆 C 与OAB 的中位线相切【答案】ACD【解析】对于 A,圆 C:(xa2)2(yb2)2a2b24ca2b24,令 xy0,恰符合;对于 B,面积为|ab|2;对于 C,a2b24ca2b24,即 c0;对于 D,圆 C:(x43)2(y43)289,中位线 3x3y40 恰与圆 C 相切10已知数列an满足 a11,an1anan1an,则Aan12anBan1an是递增数列Can14an是递增数列Dann22n2【答案】ABD【解析】对于 A,因为an1anan1an2,所以an12an;对于 B,因为an1anan1an,所以an1an是递增数列;对于 C,由an14an(an

7、2)23,可知an14an不是递增数列;对于 D,因为 an1,所以an1a2n1an1an,所以an1n1,ann,所以an1a2n1n21,即 an(n1)21n22n2 4 11在直四棱柱 ABCDA1B1C1D1中,AA1AD2AB2,ABAD,且 P 为 CC1中点,Q为 AA1上一动点,则A|PQ|5,6B三棱锥 BQPB1的体积为23C存在点 Q 使得 BD1与平面 QPB1垂直D存在点 Q 使得 AC1与平面 QPB1垂直【答案】AB【解析】以 D 为坐标原点,DA 为 x 轴,DC 为 y 轴,DD1为 z 轴,建立空间直角坐标系 Dxyz,对于 A,P(0,1,1),Q(2

8、,0,q),所以|PQ|(q1)25,且 q0,2,所以|PQ|5,6;对于 B,VBQPB1VQBPB1131122223;对于 C,BP(2,0,1),BQ(0,1,q),BD1(2,1,2),设平面 QPB1的法向量 n(x,y,z),且nBP0,nBQ0,即2xz0,yqz0则 n 可以是(1,2q,2),所以BD1不可能平行于 n;对于 D,因为AC1(2,1,2),所以AC1也不可能平行于 n12设 kR 且 k0,n2,nN*,(1kx)na0a1xa2x2anxn,则A ni0ai2nB ni1ai(1k)n1C ni1iaink(1k)n1D ni2i2ai2n(n1)k2(

9、1k)n2【答案】BC【解析】对于 A,代入 x1 得 ni0ai(1k)n;对于 B,代入 x0 得 a01,所以 ni1ai(1k)n1;对于 C,对等式两边 x 同时求导得 nk(1kx)n1a12a2xnanxn1(*),代入 x1 得 ni1iaink(1k)n1;对于D,对(*)式两边x同时求导得nk2(n1)(1kx)n22a26a3xn(n1)anxn2,代入 x1,则 ni2i(i1)aink2(n1)(1k)n2,5 所以 ni2i2ai ni2i(i1)ai ni2iaink2(n1)(1k)n2nk(1k)n1a1nk(nk1)(1k)n2nk三、填空题:本题共 4 小

10、题,每小题 5 分,共 20 分。13设 a,b0,且2 ab1,则ab的最小值为_【答案】0【解析】ab(b1)24bb414b120,当且仅当 a0,b1 时取等14已知函数 f(x)alnxbxx,g(x)f(x)若 g(1)g(3)0,则 f(2)_【答案】4ln212【解析】因为 g(x)f(x)axbx21x2axbx2,且 g(1)g(3)0,即a4,b3,所以 f(x)4lnx3xx,f(2)4ln21215已知一个正四面体的棱长为 2,则其外接球与以其一个顶点为球心,1 为半径的球面所形成的交线的长度为_【答案】303【解析】设外接球半径为 r,外接球球心到底面的距离为 h,

11、则 hr2 63,r2h243,所以 r62,由几何图形可知交线半径为306,所以交线长度为 230630316在平面直角坐标系 xOy 中,已知抛物线 C:y22px(p0)的焦点为 F(p,0),则 C 的方程为_;若 P,F 两点关于 y 轴对称,且以 PF 为直径的圆与 C 的一个交点为 A,则 cosOAF_【答案】y28x;512【解析】因为 y22px 的焦点为(p2,0),所以p2 p,解得 p4,则 C 的方程为 y28x;因为 P,F 两点关于 y 轴对称,且 OF2,6 所以以 PF 为直径的圆为 x2y24,设 A(x0,y0),则OA(x0,y0),FA(x02,y0

12、),联立y28x,x2y24则 x28x40,解得 x02 54,且 cosOAFOAFA|OA|FA|124 52 248 5512四、解答题:本题共 6 小题,共 70 分,解答时应写出文字说明,证明过程或演算步骤。17(10 分)记 Sn为数列an的前 n 项和,已知 an1,Sn12a2n是公差为12的等差数列(1)证明:an是等差数列;(2)若 a1,a2,a6可构成三角形的三边,求S13a14的取值范围解:(1)因为Sn12a2n是公差为12的等差数列,所以 Sn12a2n(Sn112a2n1)12,即(an1)2a2n1,又 an1,所以 anan11,所以an是等差数列;(2)

13、因为 a1,a2,a6可构成三角形的三边,所以 2a11a15,即 a14,又S13a1413a7a1413a178a1131391a113,且 a14,所以S13a14(13017,13)18(12 分)已知椭圆 C:x2a2y2b21(ab0)的上顶点为 A(0,1),右焦点为 F(1,0)(1)求 C 的方程;(2)若 P 为 C 上一点,且 tanAFP2 3,求直线 PF 的方程解:(1)记 C 的焦距为 2c,则 bc1,所以 a 2,C 的方程为x22y21;(2)记坐标原点为 O,且 tanAFPtan(AFOPFO),或 tanAFPtan(PFOAFO),7 因为 tanA

14、FP2 30,bc1,所以AFO45,所以 tanAFPtanAFOtanPFO1tanAFOtanPFO1tanPFO1tanPFO2 3,或 tanAFPtanPFOtanAFO1tanPFOtanAFOtanPFO11tanPFO2 3,所以 tanPFO33或 3,记直线 PF 的斜率为 k,则 ktanPFO33或 3,所以 PF 的方程为 y33(x1)或 y 3(x1),即3yx10 或3xy 3019(12 分)记ABC 的内角 A,B,C 的对边分别为 a,b,c,已知a2b2c2a2b2c2ab(1)若 C4,求 A,B;(2)若ABC 为锐角三角形,求abcos2B的取值

15、范围解:(1)因为a2b2c2a2b2c2ab2cosC,所以 sin2Asin2B2sin2CcosCsin2CsinCsin(AB)sin(AB)sinCsin(AB),代入 C4,则 sin(AB)1,所以 AB2,且 AB34,所以 A58,B38;(2)由(1)知 sin2Csin(AB),当 2CAB 时,且 ABC,若ABC 是锐角三角形,则 A2,所以 2AC,不成立;当 2CAB时,且 ABC,所以 C2B,所以 3B2,则6B4,且 C2B(3,2),A(4,2),且abcos2BsinAsinBcos2Bsin3BsinBcos2B3tan2B,又 tanB(33,1),

16、所以abcos2B(2,83)8 20(12 分)根据北京冬奥组委与特许生产商的特许经营协议,从 7 月 1 日开始,包括冰墩墩公仔等在内的 2022 北京冬奥会各种特许商品将停止生产现给出某零售店在某日(7 月 1 日前)上午的两种颜色冰墩墩的销售数据统计表(假定每人限购一个冰墩墩):蓝色粉色男顾客5a6a6女顾客2a34a3(1)若有 99的把握认为顾客购买的冰墩墩颜色与其性别有关,求 a 的最小值;(2)在 a 取得最小值的条件下,现从购买蓝色冰墩墩的顾客中任选 p 人,从购买粉色冰墩墩的顾客中任选 q 人,且 pq9(p,q0),记选到的人中女顾客人数为 X求 X的分布列及数学期望附:

17、K2n(adbc)2(ab)(cd)(ac)(bd)P(K2k)0.050.0100.001k3.8416.63510.828解:(1)因为有 99的把握认为顾客购买的冰墩墩颜色与其性别有关,不妨给出零假设 H0:顾客购买的冰墩墩颜色与其性别无关,且该假设成立概率小于等于 0.010,且由表知 P(K26.635)0.010,则 K22a36.635,即 a9.9525,又 aZ,a6Z,所以 a 的最小值为 12;(2)因为 pq9,所以 X 的所有可能取值是 0,1,2,3,4,5,6,7,8,9,所以 X 的分布列为 P(Xi)C9i12Ci24C936,i0,1,2,3,4,5,6,7

18、,8,9,且 XH(9,24,36),所以 E(X)nMN21636621(12 分)如图,四棱锥 PABCD 的体积为34,平面 PAD平面 ABCD,PAD 是面积为 3的等边三角形,四边形 ABCD 是等腰梯形,BC1,E 为棱 PA 上一动点(1)若直线 EC 与平面 ABCD 的夹角为 60,求二面角 BCED 的正弦值;(2)求EDEC的取值范围 9 DECABP解:(1)因为PAD 是面积为 3的等边三角形,所以 PAPDAD2,因为平面 PAD平面 ABCD,四边形 ABCD 是等腰梯形,过 P 作 AD 的垂线,垂足为 O,记 BC 中点为 T,连接 OT,所以 OTAD,以

19、 O 为坐标原点,OA 为 x 轴,OT 为 y 轴,OP 为 z 轴,建立空间直角坐标系 Oxyz,且 BC1,OP 3,又四棱锥 PABCD 的体积为34,所以四边形 ABCD 的面积为3 34,OT32,设 E(t,0,3 3t),又 C(12,32,0),所以 EC 4t25t4,又直线 EC 与平面 ABCD 的夹角为 60,即 4t25t422t,解得 t0,E,P 两点重合,又 E(0,0,3),BC(1,0,0),CE(12,32,3),CD(12,32,0),设平面 BCE 的法向量 n1(x1,y1,z1),平面 CDE 的法向量 n2(x2,y2,z2),且n1BC0,n

20、1CE0,n2CE0,n2CD0,即x10,y12z10,12x232y2 3z20,x2 3y20所以 n1可以是(0,2,1),n2可以是(3,1,0),记二面角 BCED 的平面角为,则|cos|cosn1,n2|n1n2|n1|n2|252,sin2 55,即二面角 BCED 的正弦值为2 55;(2)因为 ED 4t24t4,EC 4t25t4,所以EDEC4t24t44t25t41t4t25t4114t4t52 33,当且仅当 t1 时 10 取等号,且 t0 时,EDEC1,所以EDEC1,2 3322(12 分)已知函数 f(x)axex和 g(x)lnxax有相同的最大值(1

21、)求 a;(2)证明:存在直线 yb,其与两条曲线 yf(x)和 yg(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列解:(1)因为 f(x)a(1x)ex,g(x)1lnxax2,当 a0 时,令 f(x),g(x)0,f(x),g(x)0,则 f(x)在(,1)上单调递减,在(1,)单调递增,不存在最大值,g(x)在(,e)上单调递减,在(e,)单调递增,也不存在最大值;当 a0 时,f(x)在(,1)上单调递增,在(1,)单调递减,g(x)在(,e)上单调递增,在(e,)单调递减,所以 f(x)有极大值 f(1)ae,即 f(x)的最大值,g(x)有极大值 g(e)1a

22、e,即 g(x)的最大值,所以ae1ae,即 a1;(2)由(1)知 f(x)xex,g(x)f(lnx)lnxx,记 h(x)xexb,且 0b1e,则 h(x)1xex,令 h(x)0,h(x)0,则 h(x)在(,1)上单调递增,在(1,)单调递减,且 h(1)1eb0,h(b1b)0,所以存在 x0(b1b,1),使得 h(x0)0,又 h(1b)0,所以存在 x1(1,1b),使得 h(x1)0,即此时 yb 与 yf(x)有两个交点,其中一个交点在(0,1)内,另一个交点在(1,)内,同理 yb 与 yf(lnx)g(x)也有两个交点,其中一个交点在(0,e)内,另一个交点在(e,

23、)内,11 若 yb 与 yf(x)和 yg(x)共有三个不同的交点,则其中一个交点为两条曲线 yf(x)和 yg(x)的公共点,记其横坐标为 x2,令 f(x2)g(x2)f(lnx2),则 x2(1,e),lnx2(0,1),记 yb 与 yf(x),yg(x)的三个交点的横坐标从左到右依次为 x3,x2,x4,且满足 x31x2ex4,f(x3)f(x2)g(x2)g(x4),且x2ex2lnx2x2,即x22ex2lnx2,又 f(x3)f(lnx2),f(x2)f(lnx4),且 x3,lnx2(0,1),x2,lnx4(1,e),且 f(x)在(0,1)和(1,e)上分别单调,所以 x3lnx2,x2lnx4,即 x4ex2,所以x22x3x4,x2为 x3,x4的等比中项,所以从左到右的三个交点的横坐标 x3,x2,x4成等比数列

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|