ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:1.12MB ,
文档编号:3332543      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3332543.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(弧长和扇形面积课件12人教版.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

弧长和扇形面积课件12人教版.ppt

1、24.4 弧长和扇形面积第2课时1.1.了解圆锥母线的概念,理解圆锥侧面积计算公式,了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问理解圆锥全面积的计算方法,并会应用公式解决问题题2.2.探索圆锥侧面积和全面积的计算公式并应用它解决探索圆锥侧面积和全面积的计算公式并应用它解决现实生活中的一些实际问题现实生活中的一些实际问题学习目标 学习重点学习重点:圆锥侧面展开图面积的计算。圆锥侧面展开图面积的计算。学习难点学习难点:圆锥侧面展开图面积的计算。圆锥侧面展开图面积的计算。自学指导 认真看书认真看书113-114页,独立完成以下问页,独立完成以下问题,看谁做

2、得又对又快?题,看谁做得又对又快?1、什么是圆锥的母线?、什么是圆锥的母线?2、圆锥的侧面展开是什么图形?、圆锥的侧面展开是什么图形?3、怎么计算圆锥的侧面面积,圆锥的全面积?、怎么计算圆锥的侧面面积,圆锥的全面积?认识圆锥认识圆锥:生活中的圆锥生活中的圆锥一、一、情境引入情境引入 导入新课导入新课 圆锥可以看做是一个直角三圆锥可以看做是一个直角三角形绕它的一条直角边旋转角形绕它的一条直角边旋转一周所成的图形一周所成的图形.OABC二、先学环节二、先学环节 教师释疑教师释疑A AA A2 2A A1 1圆锥知识知多少圆锥知识知多少?h hr r母母线线高高底面半径底面半径底面底面侧面侧面B B

3、O O根据图形,圆锥的底面半根据图形,圆锥的底面半径、母线及其高有什么数径、母线及其高有什么数量关系?量关系?BAO设圆锥的底面半径为设圆锥的底面半径为r r,母线长为,母线长为l,高为高为h h,则有:,则有:l 2 2r r2 2+h+h2 2.即:即:OAOA2 2+OB+OB2 2=AB=AB2 2如图如图,设圆锥的母线长为设圆锥的母线长为l,底面半径为底面半径为r r,(1)(1)此扇形的半径此扇形的半径(R)(R)是是 ,(2)(2)此扇形的弧长此扇形的弧长(L)是是 ,(3)(3)此圆锥的侧面积此圆锥的侧面积(S(S侧侧)是是 ;(4)(4)它的全面积它的全面积(S(S全全)是是

4、 .圆锥的母线圆锥的母线是一个扇形是一个扇形.圆锥底面的周长圆锥底面的周长圆锥的母线与扇形弧长积的一半圆锥的母线与扇形弧长积的一半侧面展开图侧面展开图圆锥的圆锥的 是什么图形是什么图形?底面积与侧面积的和底面积与侧面积的和圆锥的侧面积和全面积圆锥的侧面积和全面积2SSSrr 全侧底lr2O Or rh hl弧长公式:弧长公式:c=c=n180l180cn l计算圆心角计算圆心角n n的度数:的度数:如何计算圆锥侧面展开图的圆心角如何计算圆锥侧面展开图的圆心角的度数呢?的度数呢?180c1802 rr360 lll【合作学习合作学习】【例例1 1】圆锥形烟囱帽圆锥形烟囱帽(如图如图)的母线长为的

5、母线长为80cm80cm,高为,高为38.7cm,38.7cm,求求这个烟囱帽的面积这个烟囱帽的面积.(取取3.143.14,结果保留,结果保留2 2个有效数字)个有效数字)【解析解析】l=80cm=80cm,h=38.7cmh=38.7cmr=r=2222lh8038.770(cm)S S侧侧=r=rl3.143.147070801.8801.810104 4(cm(cm2 2)答:答:烟囱帽的面积约为烟囱帽的面积约为1.81.810104 4cmcm2 2.【例题例题】填空填空:根据下列条件求值(其中根据下列条件求值(其中r r、h h、l分别是分别是圆锥的底面半径、高线、母线长)圆锥的底

6、面半径、高线、母线长)(1 1)l=2=2,r=1 r=1 则则 h=_h=_(2)h=3,r=4 (2)h=3,r=4 则则 l=_=_(3)(3)l=10,h=8 =10,h=8 则则 r=_r=_356【跟踪训练跟踪训练】三、后教环节三、后教环节 突出重点突出重点 突破难点突破难点 一个圆锥形的零件一个圆锥形的零件,经过轴的剖面是一个等腰三角形经过轴的剖面是一个等腰三角形,这个三角形就叫做圆锥的轴截面;它的腰长等于圆锥的母这个三角形就叫做圆锥的轴截面;它的腰长等于圆锥的母线长线长,底边长等于圆锥底面的直径底边长等于圆锥底面的直径.圆锥的轴截面圆锥的轴截面如如ABCABC就是圆锥的轴截面就

7、是圆锥的轴截面【例例2 2】已知一个圆锥的轴截面已知一个圆锥的轴截面ABCABC是等边三角形是等边三角形,它的表它的表面积为面积为 ,求这个圆锥的底面半径和母线的长求这个圆锥的底面半径和母线的长.275 cm【解析解析】圆锥轴截面圆锥轴截面ABCABC是正三角形是正三角形l=2r,=2r,rr2r+r2r+r2 2=75,=75,r=5 cmr=5 cm,l=10 cm,=10 cm,答:答:圆锥的底面半径为圆锥的底面半径为5cm5cm,母线长为,母线长为10cm.10cm.【例题例题】1.1.根据圆锥的下面条件,求它的侧面积和全面积:根据圆锥的下面条件,求它的侧面积和全面积:(1 1)r=1

8、2cm,r=12cm,l=20cm=20cm(2 2)h=12cm,r=5cm h=12cm,r=5cm 2.2.一个圆锥的侧面展开图是半径为一个圆锥的侧面展开图是半径为18cm,18cm,圆心角为圆心角为240240度度的扇形的扇形.则这个圆锥的底面半径为则这个圆锥的底面半径为_._.12cm12cmS S侧侧=240,S=240,S全全=384=384S S侧侧=65,S=65,S全全=90=90【跟踪训练跟踪训练】1.1.(晋江(晋江中考)已知圆锥的高是中考)已知圆锥的高是30cm,30cm,母线长是母线长是50cm,50cm,则圆锥的侧面积是则圆锥的侧面积是_._.【解析解析】222S

9、r5050302 000 (cm)l 侧答案答案:22 000 cm【解析解析】答案答案:222Sr43420 (cm)l 侧面202.2.(眉山(眉山中考)已知圆锥的底面半径为中考)已知圆锥的底面半径为4cm4cm,高为,高为3cm3cm,则这个圆锥的侧面积为则这个圆锥的侧面积为_cm_cm2 2四、当堂检测四、当堂检测 巩固新知巩固新知4.4.扇形的半径为扇形的半径为30,30,圆心角为圆心角为120120用它做一个圆锥模型的用它做一个圆锥模型的侧面侧面,求这个圆锥的底面半径和高求这个圆锥的底面半径和高.r=10;h=r=10;h=2203.3.圆锥的底面直径为圆锥的底面直径为80cm.8

10、0cm.母线长为母线长为90cm,90cm,求它的全面积求它的全面积.S S全全=5200 cm=5200 cm2 2答案答案:答案答案:通过本课时的学习,需要我们:通过本课时的学习,需要我们:1.1.了解圆锥母线的概念,理解圆锥侧面积计算公式了解圆锥母线的概念,理解圆锥侧面积计算公式.2.2.理解圆锥全面积的计算方法,并会应用公式解决问理解圆锥全面积的计算方法,并会应用公式解决问题题五、课堂小结五、课堂小结六、家庭作业六、家庭作业 1、必做 p116页 9、10题 2、选作 p116页 11题1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。2、从善如登,从恶如崩。

11、3、现在决定未来,知识改变命运。4、当你能梦的时候就不要放弃梦。5、龙吟八洲行壮志,凤舞九天挥鸿图。6、天下大事,必作于细;天下难事,必作于易。7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。9、永远不要逃避问题,因为时间不会给弱者任何回报。10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。11、明天是世上增值最快的一块土地,因它充满了希望。12、得意时应善待他人,因为你失意时会需要他们。13、人生最大的错误是不断担心会犯错。14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的

12、收获。15、不管怎样,仍要坚持,没有梦想,永远到不了远方。16、心态决定命运,自信走向成功。17、第一个青春是上帝给的;第二个的青春是靠自己努力的。18、励志照亮人生,创业改变命运。19、就算生活让你再蛋疼,也要笑着学会忍。20、当你能飞的时候就不要放弃飞。21、所有欺骗中,自欺是最为严重的。22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。23、天行健君子以自强不息;地势坤君子以厚德载物。24、态度决定高度,思路决定出路,细节关乎命运。25、世上最累人的事,莫过於虚伪的过日子。26、事不三思终有悔,人能百忍自无忧。27、智者,一切求自己;愚者,一切求他人。2

13、8、有时候,生活不免走向低谷,才能迎接你的下一个高点。29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。30、经验是由痛苦中粹取出来的。31、绳锯木断,水滴石穿。32、肯承认错误则错已改了一半。33、快乐不是因为拥有的多而是计较的少。34、好方法事半功倍,好习惯受益终身。35、生命可以不轰轰烈烈,但应掷地有声。36、每临大事,心必静心,静则神明,豁然冰释。37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。39、人的价值,在遭受诱惑的一瞬间被决定。40、事虽微,不为不成;道虽迩,不行不至。41

14、、好好扮演自己的角色,做自己该做的事。42、自信人生二百年,会当水击三千里。43、要纠正别人之前,先反省自己有没有犯错。44、仁慈是一种聋子能听到、哑巴能了解的语言。45、不可能!只存在于蠢人的字典里。46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。47、小事成就大事,细节成就完美。48、凡真心尝试助人者,没有不帮到自己的。49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。51、对于最有能力的领航人风浪总是格外的汹涌。52、思想如钻子,必须集中在一点钻下去才有力量。53、年少时,梦想

15、在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。54、最伟大的思想和行动往往需要最微不足道的开始。55、不积小流无以成江海,不积跬步无以至千里。56、远大抱负始于高中,辉煌人生起于今日。57、理想的路总是为有信心的人预备着。58、抱最大的希望,为最大的努力,做最坏的打算。59、世上除了生死,都是小事。从今天开始,每天微笑吧。60、一勤天下无难事,一懒天下皆难事。61、在清醒中孤独,总好过于在喧嚣人群中寂寞。62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。63、

16、彩虹风雨后,成功细节中。64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。65、只要有信心,就能在信念中行走。66、每天告诉自己一次,我真的很不错。67、心中有理想 再累也快乐68、发光并非太阳的专利,你也可以发光。69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。70、当你的希望一个个落空,你也要坚定,要沉着!71、生命太过短暂,今天放弃了明天不一定能得到。72、只要路是对的,就不怕路远。73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。74、先知三日,富贵十年。付诸行动,你就会得到力量。75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。76、好习惯成就一生,坏习惯毁人前程。77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|