ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:454KB ,
文档编号:3357177      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3357177.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(二次函数的几种解析式及求法ppt-人教版课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

二次函数的几种解析式及求法ppt-人教版课件.ppt

1、二次函数的几种解析式及求法二次函数的几种解析式及求法练习练习1练习练习2应用举例应用举例练习练习3练习练习4 二次函数是初中代数的重要内容之一,也是历年中考的重点。这部分知识命题形式比较灵活,既有填空题、选择题,又有解答题,而且常与方程、几何、三角等综合在一起,出现在压轴题之中。因此,熟练掌握二次函数的相关知识,会灵活运用一般式、顶点式、交点式求二次函数的解析式是解决综合应用题的基础和关键。一、二次函数常用的几种解析式的确定已知抛物线上三点的坐标,通常选择一般式。通常选择一般式。已知抛物线上顶点坐标(对称轴或最值),通常选择顶点式。通常选择顶点式。已知抛物线与x轴的交点坐标或对称轴,选择交点式

2、。1、一般式、一般式2、顶点式、顶点式3、交点式、交点式4、平移式 将抛物线平移,函数解析式中发生变化的只有顶点坐标,可将原函数用顶点式表示,再根据“左加右减,上加下减“的法则,即可得出所求新函数的解析式。二、求二次函数解析式的思想方法 1、求二次函数解析式的常用方法:求二次函数解析式的常用方法:2、求二次函数解析式的、求二次函数解析式的 常用思想:常用思想:3、二次函数解析式的最终形式:、二次函数解析式的最终形式:待定系数法、配方法、数形结合等。转化思想转化思想 解方程或方程组解方程或方程组 无论采用哪一种解析式求解,最后无论采用哪一种解析式求解,最后结果都化为一般式。结果都化为一般式。例例

3、1、已知二次函数、已知二次函数 的图像如图所示,的图像如图所示,求其解析式。求其解析式。解法一:解法一:一般式一般式设解析式为顶点C(1,4),对称轴 x=1.A(-1,0)关于 x=1对称,B(3,0)。A(-1,0)、B(3,0)和C(1,4)在抛物线上,即:三、应用举例三、应用举例例例1、已知二次函数、已知二次函数 的图像如图所示,的图像如图所示,求其解析式。求其解析式。解法二:顶点式解法二:顶点式设解析式为顶点C(1,4)又A(-1,0)在抛物线上,a =-1即:h=1,k=4.三、应用举例三、应用举例解法三:交点式解法三:交点式设解析式为抛物线与x 轴的两个交点坐标 为 A(-1,0

4、)、B(3,0)y=a(x+1)(x-3)又 C(1,4)在抛物线上 4=a (1+1)(1-3)a=-1 y=-(x+1)(x-3)即:例例1、已知二次函数、已知二次函数 的图像如图所示,的图像如图所示,求其解析式。求其解析式。三、应用举例三、应用举例评析:评析:本题可采用一般式、顶点式和交点式求本题可采用一般式、顶点式和交点式求解,通过对比可发现用顶点式和交点式求解解,通过对比可发现用顶点式和交点式求解比用一般式求解简便。同时也培养学生一题比用一般式求解简便。同时也培养学生一题多思、一题多解的能力,从不同角度进行思多思、一题多解的能力,从不同角度进行思维开放、解题方法开放的培养。注重解题技

5、维开放、解题方法开放的培养。注重解题技巧的养成训练,可事半功倍。巧的养成训练,可事半功倍。2005年中考数学命题趋势,贴近年中考数学命题趋势,贴近学生生活,联系实际,把实际问题转化学生生活,联系实际,把实际问题转化为数学模型,培养学生分析问题、解决为数学模型,培养学生分析问题、解决问题的能力,增强学以致用的意识。问题的能力,增强学以致用的意识。例例2、已知:如图,是某一抛物线形拱形桥,拱桥底面宽度、已知:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是是12米,当水位是米,当水位是2米时,测得水面宽度米时,测得水面宽度AC是是8米。米。(1)求拱桥所在抛物线的解析式;()求拱桥所在抛物线的解析式

6、;(2)当水位是)当水位是2.5米时,米时,高高1.4米的船能否通过拱桥?请说明理由(不考虑船的宽度。米的船能否通过拱桥?请说明理由(不考虑船的宽度。船的高度指船在水面上的高度)。船的高度指船在水面上的高度)。三、应用举例三、应用举例即:E EFa =-0.1解:(1)、由图可知:四边形ACBO是等腰梯形过A、C作OB的垂线,垂足为E、F点。OE=BF=(12-8)2 =2。O(0,0),B(-12,0),A(-2,2)。设解析式为又 A(-2,2)点在图像上,三、应用举例例例2、已知:如图,是某一抛物线形拱形桥,拱桥底面宽度、已知:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是是12米,当水

7、位是米,当水位是2米时,测得水面宽度米时,测得水面宽度AC是是8米。米。(1)求拱桥所在抛物线的解析式;()求拱桥所在抛物线的解析式;(2)当水位是)当水位是2.5米时,米时,高高1.4米的船能否通过拱桥?请说明理由(不考虑船的宽度。米的船能否通过拱桥?请说明理由(不考虑船的宽度。船的高度指船在水面上的高度)。船的高度指船在水面上的高度)。PQ(2)、分析:船能否通过,只要看船在拱桥正中间时,、分析:船能否通过,只要看船在拱桥正中间时,船及水位的高度是否超过拱桥顶点的纵坐标。船及水位的高度是否超过拱桥顶点的纵坐标。y=水位+船高 =2.5+1.4 =3.9 3.6解:顶点(-6,3.6),当水

8、位为2.5米时,船不能通过拱桥。PQ是对称轴。复习二次函数四种平移关系复习二次函数四种平移关系例例3、将抛物线、将抛物线 向左平移向左平移4个单位,个单位,再向下平移再向下平移3个单位,求平移后所得抛物线的解析式。个单位,求平移后所得抛物线的解析式。解法:将二次函数的解析式 转化为顶点式得:(1)、由 向左平移4个单位得:(左加右减)(2)、再将 向下平移3个单位得 (上加下减)即:所求的解析式为 三、应用举例三、应用举例1、已知二次函数的图像过原点,当、已知二次函数的图像过原点,当x=1时,时,y有最小值为有最小值为-1,求其解析式。,求其解析式。四、尝试练习解:设二次函数的解析式为 x=1

9、,y=-1,顶点(1,-1)。又(0,0)在抛物线上,a =1 即:2、已知二次函数与、已知二次函数与x 轴的交点坐标为(轴的交点坐标为(-1,0),(1,0),点(),点(0,1)在图像上,求其解析式。)在图像上,求其解析式。解:设所求的解析式为抛物线与x轴的交点坐标为(-1,0)、(1,0)又点(0,1)在图像上,a=-1即:四、尝试练习3 3、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大高度为高度为3.6m3.6m,跨度为,跨度为7.2m7.2m一辆卡车车高一辆卡车车高3 3米,宽米,宽1.61.6米,米,它能否通过隧道?它能否通过隧道?

10、四、尝试练习 即当即当x=OC=1.62=0.8米时,米时,过过C点作点作CDAB交抛物线于交抛物线于D点,点,若若y=CD3米,则卡车可以通过。米,则卡车可以通过。分析:卡车能否通过,只要看卡分析:卡车能否通过,只要看卡车在隧道正中间时,其车高车在隧道正中间时,其车高3米是否米是否超过其位置的拱高。超过其位置的拱高。四、尝试练习3 3、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大高度为高度为3.6m3.6m,跨度为,跨度为7.2m7.2m一辆卡车车高一辆卡车车高3 3米,宽米,宽1.61.6米,米,它能否通过隧道?它能否通过隧道?解:由图知:

11、AB=7.2米,OP=3.6米,A(-3.6,0),B(3.6,0),P(0,3.6)。又P(0,3.6)在图像上,当x=OC=0.8时,卡车能通过这个隧道。四、尝试练习 4、将二次函数、将二次函数 的图像向右平移的图像向右平移1个单位,个单位,再向上平移再向上平移4个单位,求其解析式。个单位,求其解析式。解:二次函数解析式为(1)、由 向右平移1个单位得:(左加右减)(2)、再把 向上平移4个单位得:(上加下减)即:所求的解析式为五、小结1、二次函数常用解析式、二次函数常用解析式.已知图象上三点坐标,通常选择一般式。已知图象上三点坐标,通常选择一般式。.已知图象的顶点坐标(对称轴或最值),通

12、常选择顶点式。已知图象的顶点坐标(对称轴或最值),通常选择顶点式。.已知图象与已知图象与x轴的两个交点的横坐标轴的两个交点的横坐标x1、x2,通常选择交点式。通常选择交点式。3.3.确定二次函数的解析式的确定二次函数的解析式的关键关键是是根据条件的根据条件的特点,特点,恰当地恰当地选择选择一种函数表达式一种函数表达式,灵活应用灵活应用。2、求二次函数解析式的一般方法:、求二次函数解析式的一般方法:已知图象中发生变化的只有顶点坐标,通常选择平移式。已知图象中发生变化的只有顶点坐标,通常选择平移式。谢谢!谢谢!46凡事不要说我不会或不可能,因为你根本还没有去做!47成功不是靠梦想和希望,而是靠努力

13、和实践48只有在天空最暗的时候,才可以看到天上的星星49上帝说:你要什么便取什么,但是要付出相当的代价50现在站在什么地方不重要,重要的是你往什么方向移动。51宁可辛苦一阵子,不要苦一辈子52为成功找方法,不为失败找借口53不断反思自己的弱点,是让自己获得更好成功的优良习惯。54垃圾桶哲学:别人不要做的事,我拣来做!55不一定要做最大的,但要做最好的56死的方式由上帝决定,活的方式由自己决定!57成功是动词,不是名词!28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。59、世界上最不能等待的事情就是孝敬父母。60、身体发肤,受之父母,不敢毁伤,孝之始也;立身行道,扬名於后世,以显父母,孝之终也

14、。孝经61、不积跬步,无以致千里;不积小流,无以成江海。荀子劝学篇62、孩子:请高看自己一眼,你是最棒的!63、路虽远行则将至,事虽难做则必成!64、活鱼会逆水而上,死鱼才会随波逐流。65、怕苦的人苦一辈子,不怕苦的人苦一阵子。66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。67、不可能的事是想出来的,可能的事是做出来的。68、找不到路不是没有路,路在脚下。69、幸福源自积德,福报来自行善。70、盲目的恋爱以微笑开始,以泪滴告终。71、真正值钱的是分文不用的甜甜的微笑。72、前面是堵墙,用微笑面对,就变成一座桥。73、自尊,伟大的人格力量;自爱,维护名誉的金盾。74、今天学习不努力

15、,明天努力找工作。75、懂得回报爱,是迈向成熟的第一步。76、读懂责任,读懂使命,读懂感恩方为懂事。77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。78、技艺创造价值,本领改变命运。79、凭本领潇洒就业,靠技艺稳拿高薪。80、为寻找出路走进校门,为创造生活奔向社会。81、我不是来龙飞享福的,但,我是为幸福而来龙飞的!82、校兴我荣,校衰我耻。83、今天我以学校为荣,明天学校以我为荣。84、不想当老板的学生不是好学生。85、志存高远虽励志,脚踏实地才是金。86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。87、讲孝道读经典培养好人,传知识授技艺打造能人。88、知技并重,德行为先。89、生活的理想,就是为了理想的生活。张闻天90、贫不足羞,可羞是贫而无志。吕坤

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|