ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:269.04KB ,
文档编号:3376361      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3376361.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(ChNumbers离散数学英文版PPT课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

ChNumbers离散数学英文版PPT课件.ppt

1、Chapter 4:Number TheoryElements of Discrete Structures1Intro to Integers and Division A branch of mathematics is called Number Theory It involves integers and their properties Basic concept of number theory is used through out computer science We will study:integer division,modular arithmetic,primes

2、(素数),greatest common divisors and some algorithms in number theory2DivisionDefinition:If aZ and bZ with a 0,we say that a divides b if c Z,b=ac.It is also called b is divisible by a When a divides b,we say a is a factor of b and that b is a multiple of a We use a|b to denote a divides bWe use a b to

3、 denote a does not divides b3Example Let n and d be positive integers.Question:How many positive integers n are divisible by d?Those numbers are 1d,2d,kd,where kd n and(k+1)d n So,from kd n,we know k n/d.We conclude that there are n/d positive integers n that are divisible by d When n=11,d=3,11/3=3.

4、The positive integers that are divisible by 3 are 3,6,and 94Theorem 1Theorem 1:Let a,b and c Z:1)If a|b and a|c,then a|(b+c)2)If a|b then a|bc for all c Z3)If a|b and b|c,then a|cProof of 1):by definition,d Z e Z and b=ad and c=ae.So b+c=ad+ae=a(d+e),d+e is an integer.By definition,a divides b+c5The

5、 Division Algorithm Theorem 2:(Proof will be given later)Every integer a,when divided by a positive integer d,can be expressed uniquely in terms of a quotient q Z and a remainder r N as a=dq+r (0 r d)We call d the divisor,a the dividend,q the quotient,and r the remainder.q=a div d r=a mod d(a modulo

6、 d)(Be used very often)6The Division Algorithm Division Algorithm Examples:1)11 div 3=3;11 mod 3=2;Or 11=33+22)-11 div 3=-4;-11 mod 3=1;Or-11=3(-4)+13)12 div 3=4;12 mod 3=0;Or 3 divides 12,or 3|124)“a divides b”is equivalent to“b mod a=0”7Modular Arithmetic Definition:Given two integers a and b,and

7、a positive integer m.Then a is congruent(同余同余)to b modulo m,denoted by a b(mod m),if m|(a b)Theorem 3:Let a and b be integers and m a positive integer.Then a b(mod m)iff (a mod m)=(b mod m)By the Division Theorem,let a=mq1+r1 and b=mq2+r28Modular Arithmetic Proof of Theorem 3:IF:if(a mod m)=(b mod m

8、)(remainders are the same:r1=r2),then a b=mq1+r1 (mq2+r2)=m(q1 q2)or m|(a b).By definition,a is congruent to b modulo m9Modular Arithmetic Proof of Theorem 3:ONLY-IF:by definition of congruence,there exists k Z,a b=km,or a=b+km (i)From the Division Algorithm,for some q,r Zb=qm+r,(0 r 1 is called pri

9、me if the only positive factors of p are 1 and p Definition:a positive integer 1 that is not prime is called composite Primes less than 100 are2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,71,73,79,83,89,9712The Fundamental Theorem of Arithmetic Every positive integer can be written uniquely as

10、a prime or the product of primes(in nondecreasing order)(Proof by Induction will be provided in Chapter 5)Examples100=2255=2252641=641(prime!)999=33337=33371024=2222222222=21013Prime Divisor Theorem If n is a composite integer,then n has a prime divisor n Proof:by definition of a composite integer,t

11、here are positive(1)integers a and b such that n=ab.Then a or b must be n because otherwise ab n.Lets assume a n.By the Fundamental Theorem of Arithmetic,a is either a prime or product of primes,and each such prime is n 14Example Show that 101 is a prime Solution:Using Prime Divisor Theorem:The only

12、 primes 101 are 2,3,5,7,but none of them divides 101.It follows that 101 is a prime Example:Find the prime factorization of 7007.Try 2,3,5,7,(worst case 7007 83).But 7007/7=1001,1001/7=143 and 143/13.So,7007=72 11 1315Infinite Primes Theorem There are infinitely many primes By contradiction.Assume t

13、here are finite number of primes,p1,p2,pn.LetQ=p1 p2 pn+1First of all,pj(j=1,n)is not a factor of Q.Otherwise,pj can divide 1=Q p1 p2 pn.By the Fundamental Theorem of Arithmetic,Q is a prime or product of primes.If Q is a prime,it is a contradiction.If it is a product of primes,the primes must be la

14、rger that any of p1,p2,pn.Its also a contradiction16The Largest Primes FoundPrimeNumber of decimal digitsTypeDateFound by257885161-1 17,425,170 Mersenne prime 2013Great Internet Mersenne Prime Search19,249 213,018,586+13,918,990Proth number2007Seventeen or Bust150209!+1712,355factorial prime2011Doma

15、nov,PrimeGrid3756801695685 2666669 1200,700twin primes2011Twin prime search17Greatest Common Divisors Definition:Given integers a and b(not both zero).The greatest common divisor of a and b,denoted by gcd(a,b),is the largest integer d such that d|a and d|b Example:Find gcd(24,36)All divisors common

16、to 24 and 36 are1,2,3,4,6 and 12.Hence,gcd(24,36)=12 Example:gcd(17,22)=118Relative Primes Definition:Two integers a and b are relatively prime if gcd(a,b)=1 ExamplesAre 17 and 44 relatively prime?How about 17 and 51?19Least Common Multiplier Definition:Given positive integers a and b.The least comm

17、on multiple of a and b,denoted by lcm(a,b),is the smallest positive integer d such that a|d and b|d Examplesa=12,b=8,lcm(12,8)=24a=30,b=15,lcm(30,15)=30a=233572,b=2433,lcm(a,b)=243572a=12,b=7,lcm(12,7)=127=8420The Euclidean Algorithm for GCD To find gcd(91,287),divide 287(the larger)by 91(the smalle

18、r)to obtain the quotient and the remainder:287=913+14(i),or 287 913=14(ii)Based on Theorem 1 of 4.1(a|b a|c a|b+c)(ii):any divisor of 287 and 91 must be a divisor of 14 So:(287,91)and(91,14)have the same common divisors Finding gcd(287,91)becomes finding gcd(91,14).91=146+7,finding gcd(14,7)=7=gcd(2

19、87,91)21Lemma 1 Given a=bq+r,where a,b,q,and r 0 are integers.Then gcd(a,b)=gcd(b,r)Example:find gcd(414,662)662=4141+248 414=2481+166 248=1661+82 166=822+2(last nonzero remainder=2)82=241+0 2 0 gcd(414,662)=gcd(82,2)=222Algorithm 6 Euclidean Algorithmprocedure gcd(a,b:positive integers)x:=ay:=bwhile y 0 begin r:=x mod y x:=y y:=rend gcd(a,b)is x when y=r=0(Try example gcd(9,6)=gcd(?,?)=)23Exercises#6 P229:2,4,8,13,34 P244:3,4,9a-d,15,16,20,29 P272:3d-f,25a-c,26(for 25a-c),33b-c,34 Finish before midterm exam.Come to my Q&A time for questions!Turn in the week after the midterm24

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|