ImageVerifierCode 换一换
格式:PPT , 页数:51 ,大小:14.04MB ,
文档编号:3377199      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3377199.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(DOE简介经典方法精选课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

DOE简介经典方法精选课件.ppt

1、试验设计(Design of Experiments)简介Pg 2确认偏差来源:探测性分析取得突破的蓝图优化输出变量控制X和 监控Y确立长期质量管理控制明确项目定义确认输入及输出指标分析测量系统确定工艺能力测量确认偏差来源:统计性分析确认偏差来源:方差分析规划试验设计分析筛选关键输入变量(DOE)找寻交互作用(DOE)确定Y=f(X)改进6 Sigma概论项目管理计算机应用基础统计学确定Pg 3改进阶段:可能取得的成果?项目回顾和第一,二次课程其余成果?筛选关键输入变量?设计一个试验?部分因子试验?找寻交互作用(DOE)及 定义 Y=f(X)?2K因子试验?2K:中心点及分区试验?为 DOE选

2、定样本尺寸?全因子试验?优化试验简介?完成阶段总结?结论,问题和下阶段任务Pg 4Y=f(x)试验定义试验是一个或一系列 有目的有目的地改变流程或系统的输入变量输入变量以观察识别 输出应变量输出应变量 随之改变的实验Douglas C.Montgomery那些自变量X显著的影响着Y?这些自变量X取什么值时将会使Y达到最佳值?Pg 5噪音输入变量噪音输入变量(连续)流程或系统的一般模型可控输入变量流程关键流程输出指标噪音输入变量噪音输入变量(离散)?Pg 6试验的目的?确定?那些输入对输出影响最大(确定关键输入变量)?什么样的输入设置能产生理想的输出结果?怎样设置影响最大的输入水平以减少输出变量

3、的变化范围?怎样设置可控输入水平使得不能控制的输入变量对输出的影响减到最小?找出定义流程的公式(y=f(x)以优化流程Pg 7试验设计中的基本术语?因子(可控因子,非可控因子)X?水平:为了研究因子对响应的影响,需要用到因子的两个或更多的不同的取值,这些取值称为因子的水平(level)或设置(Setting).?处理:按照设定因子水平的组合,我们就能进行一次试验,可以获得一次响应变量的观测值,也可以称为一次“试验”(trial,experimental run),也称为“一次运行”(run).?试验单元(experiment unit):对象,材料或制品等载体,处理(试验)应用其上的最小单位?

4、试验环境:以已知或未知的方式影响试验结果的周围环境?模型:可控因子(X1,X2,Xn),响应变量(Y),f 某个确定的函数关系?Y=f(X1,X2,X3,.Xk)+Error(误差)?主效应:某因子处于不同水平时响应变量的差异?交互效应:如果因子A的效应依赖于因子B所处的水平时,我们称A与B之间有交互作用.?OFAT法(One-Factor-At-a-Time):在各因子的变化范围每次改变一个因子的水平以选定各因子的最佳水平。.Pg 8试验设计的基本原则?重复试验(replication)一个处理施加于多个试验单元。我们一定要进行不同单元的重复(replicate),而不能仅进行同单元的重复(

5、repetition):要重做试验,而不能仅重复观测或重复取样。?随机化(randomization):用完全随机的方式安排各次试验的顺序和或所用的试验单元。防止那些试验者未知的但可能会对响应变量产生的某种系统的影响。?划分区间(blocking):按照某种方式把各个试验单元区分成组,每组内保证差异较小,使他们具有同质齐性(homogeneous),则我们可以在很大程度上消除由于较大试验误差所带来的分析上的不利影响。如果分区组有效,则这种方法在分析时,可以将区组内与区组间的差异分离出来,这样就能大大减少可能存在的未知变量的系统影响。?能划分区组者则划分取组,不能划分区组者则随机化。?Block

6、 what you can and randomize what you cannotPg 9?打一轮高尔夫球的输出变量是什么?分数,越低越好(击球及推杆数少)?可控制的输入变量是什么?球及球杆的类型?带着球杆步行或开车运送?玩球时喝掉的啤酒瓶数?不可控制的输入变量是什么?击球的前后一致性?天气 风,雨,太阳,温度设想打高尔夫球是一个试验?Pg 10“最佳猜测”法?工业界最常用?程序?选择“最佳估计”的因子组合?Ping 牌球杆,Titleist 牌球,开车,四瓶啤酒?进行一次试验(打一轮)?输出结果与预期值比较(分数:94 不太好)?如结果不理想,将其中一个因子的水平改变 重新试验?如需要重

7、复试验?缺点?如第一次估计错误,需要更多次试验 低效率且时间长?如第一次估计可以接受,试验会停止下来,“最佳”方案可能永远找不到Pg 11OFAT法每次一个因子(One-Factor-At-a-Time)?常用于对所研究流程了解有限的情况?程序?选择一个因子水平的组合作基线?在各因子的变化范围每次改变一个因子的水平?选定各因子的最佳水平?对啤酒及走或开车的组合:?Pg 12OFAT的缺点?主要缺点?OFAT 未能考虑交互作用?交互作用 在另一个因子的不同水平,一个因子产生的效果不相同?另一个缺点?OFAT 总是比统计学试验设计效率差Pg 13解决方案-因子试验设计?处理多个因子的正确方法是进行

8、因子因子试验?即 DOE(Design Of Experiments)?因子试验?各因子一起改变其水平而不是一次一个?试验设计是进行一整套试验且所有试验完成后才进行分析Pg 14因子试验实例?考虑高球例子的两个因子:啤酒和 开车?一个因子试验会设置如下:?各因子在另一个因子的各水平改变其水平?I如加上第三个因子,球的类型(Titleist 或 Pinnacle),设计会变成:车啤酒wr04车啤酒wr04?Pg 15因子试验练习?把前例的试验设计方案填如表中?车?低水平:走?高水平:开车?啤酒?低水平:0?高水平:4?Balls?低水平:Titleist?高水平:PingRun No Carts

9、 BeersBalls12345678Pg 16试验通用处方定义定义1.陈述实际问题2.陈述试验目的3.陈述因变量(Y)4.选择输入变量5.选择输入因子的水平实施实施6.选择试验设计方案及样本尺寸7.进行试验并采集数据8.分析数据9.得到统计学及实际答案10.把结论转化为实际问题的方案Pg 17试验目的?试验目的和项目目的不同?一个试验通常不够?一系列试验通常导致优化试验?DOE 与项目目的有关?进行试验是为了达到项目目的?进行试验不只是满足试验者的好奇心.Pg 18选择输出变量?试验因变量的例子:?电镀流程 厚度,均匀度,纯度?开发票流程 正确发票数,周期时间?高球例子:?主要因变量:总杆数

10、?其它可能因变量:距发球点及球道中心的距离(球杆及球的类型试验)Pg 19选择输入因子?输入因子 在试验中要研究其对因变量影响的流程输入变量之一?定量(连续)输入:温度,压力,时间等.?定性(离散)输入:操作员,机器,工厂,批次,触媒等.?应选那些因子?用6 Sigma 工具!?流程图,C&E 矩阵,FMEA?多变量分析,假设检验Pg 20选择输入因子?高球实例:因子:球杆类型(商标)球的类型(商标)行走或开车啤酒瓶数?Pg 21选择各因子的水平?水平:输入变量的值(设置)?例如:如温度是输入?水平:125,150,175?例如:如操作员是输入?Mary,Beth,Tom,Saunders?在

11、高球例子中:因子水平球杆Ping,Titleist球Top Flite,Titleist交通工具走,车啤酒0,4Pg 22选择各因子的水平?选择各因子水平应考虑:?我希望看到多大的变化?偏差的正常范围是多少?我能改变多少但仍安全?机器/工艺的限度在哪里?本试验的类型是什么?筛选 用跨度大的水平?优化 根据以前试验的结果选用适当的水平.?几个水平?依资源及试验目的而定?两个水平很方便,如随后的章节所示Pg 23选择试验设计方案?简单的比较型试验?两个均值的检验?1-和 2-样本 t-检验?配对 t-检验?1-和 2-方差检验?1-和 2-比例检验?单因子试验:?方差分析?按统计学设计的试验 DO

12、EPg 24做试验的一些窍门?利用问题中非统计学的部分?这对正确选择因子和水平极有价值?应用统计学不能代替对问题的思考?尽可能保证设计及分析简便?KISS Keep it Simple,Stupid!(简单到愚蠢!)?复杂的试验和分析常会有错误?明了统计学重要性与实际重要性的区别?流程变化会导致统计学显著差别,但并不意味着该差别是重要的?试验本身是重复性的?我们的知识与日俱增.应期望用数个试验才能获得最佳工艺.?一般指导方针:在第一个试验中使用不超过25%的资源.Pg 25总结报告?一定为DOE写一个专门的报告?DOE通常涉及多人且耗费大量资源?大多数人希望在项目结束前了解得到的结果怎样?报告

13、/汇报DOE结果能帮助教导更多人关于 DOE 的原理.记住有关临界数量及文化变革的教诲?DOEOutline.doc能帮助你作DOE总结报告的大纲DOEOutline.docPg 26有效进行试验的障碍问题不清问题不清目的不清目的不清脑力风暴不足脑力风暴不足试验结果不清试验结果不清DOE 太贵太贵DOE 时间太长时间太长对对 DOE策略了解不够策略了解不够对 DOE工具了解不够初期信心不足初期信心不足缺乏管理层支持缺乏管理层支持要即时看到结果要即时看到结果缺乏适当指导缺乏适当指导/支持支持全因子试验高球例子一个简单的2x2 因子试验?一位高球手试验两个球杆制造商和两种球的性能.他用每套球杆和每

14、种球进行练习并记下了杆数.?我们称此为全因子设计,所有因子的每个水平与所有其它因子的所有水平组合进行试验.?本实验中,因子,因子的水平及因变量都是什么?PingPeerlessTop Flite8784Titleist8682球杆球Pg 285.32868728284?PingPeerless因变量因变量球杆主效果计算主效果?主效果 因变量由于改变因子的水平所引起的平均变化.5.12848728286?TopFliteTitleist因变量因变量球主效果Pg 29什么是主效果?高球的主效果是指用Topflite 牌球与用 Titleist 牌球时平均杆数的变化.高球的主效果高球的主效果8383

15、.58484.58585.586TopfliteTitleist球的类型平均杆数1.5 杆Pg 30主效果2?再考虑行走/开车及喝啤酒的实验.?本实验中,因子,因子的水平及因变量都是什么?主效果都有多大?行走 开车0858449285交通手段啤酒42928528584?行走开车主效果因变量因变量交通4285922858440?因变量因变量啤酒主效果Pg 31主效果图?对前面两个例子,用Minitab的主效果图表达?提示:Stat ANOVA Main Effects PlotsGolf.mtwPg 32交互作用图?对前面两个例子,用Minitab的交互作用图表达?提示:Stat ANOVA I

16、nteractions Plot?Pg 33交互作用?交互作用 一个因子的水平变化引起的因变量变化在另一个因子的不同水平不完全相同.?在低的啤酒水平,交通工具的影响是:?在高的啤酒水平,交通工具的影响是:?啤酒/交通的交互作用大小是,这两个影响的差值:18584?79285?32/)1(7(?行走 开车0858449285交通手段啤酒Pg 34从另一个角度看交互作用?还记得随机分区实验中讲过的加和性模型吗?由残值与预期值图所示该模型与实际不符合?加入交互作用项后就改正了这个差劲的模型?最后的模型:ijjiijy?0.50.0-0.576543210ResidualFrequencyHistog

17、ram of Residuals252015105010-1Observation NumberResidualI Chart of ResidualsMean=7.11E-16UCL=0.7292LCL=-0.729212111090.50.0-0.5FitResidualResiduals vs.Fits210-1-20.50.0-0.5Normal Plot of ResidualsNormal ScoreResidualResidual Model Diagnosticsijjijiijy?Pg 352k因子设计使用2k设计的首要五点理由1.使用因子试验的第一个理由是:2.因子试验设计

18、易懂易解(Minitab 有许多 2k设计的路径)3.因子试验设计构成部分实施因子试验设计这个高级技术课题的基础4.当需要更多的详细资讯时因子试验设计可扩充形成合成设计5.因子试验设计对每一因子要求进行较少的试验Y=f(x)Pg 372k因子设计-符号?2k设计是所有因子只有两个水平的试验.?符号:?一般而言:在 2 x 2 x 3 试验中有多少因子和每个因子几个水平?全因子试验中有多少种试验组合?在 2 x 2 x 2 x 2 x 2 试验中有多少因子和几个水平?全因子试验中有多少种试验组合?25等于什么?在 27 试验中有多少因子和几个水平?有多少种试验组合?2k?在 2k因子试验中有多少

19、因子和几个水平?有多少种试验组合?Pg 38几点要素?在 2k的试验中:?将一个因子的水平指定为“低”并编码为-1?将另一个因子水平指定为“高”并编码为+1?标准顺序:熔炉-1-1-1-1-1-111-11-111111温度 时间-1-11-1-1111该表称之为对比差异表练习创作一个 24因子设计矩阵需要作多少次试验?Pg 39?Temp主效果?在 2k的试验设计 DOE 中:?一个因子的主效果是该因子在“高”水平时所有数据的平均值减去该因子在“低”水平时所有数据的平均值.?或:?对于我们的试验,温度的主效果为:低高因变量因变量主效果?温度时间炉子HRC-1-1-1431-1-145-11-

20、14511-149-1-11431-1146-111451114925.34425.47445434543449464945?温度Pg 40用图形展示主效果25.34425.47?低高因变量因变量主效果42434445464748低(-1)高(+1)因变量(HRC)+3.2544?低温度RCH25.47?高温度RCH温度的主效果水平(温度)Pg 41从对比差异表中计算主效果?将因变量乘以对应因子的符号(-1 或+1),然后相加求和,并除以 n(各水平数据点的个数)温温度时间炉炉子HRCHRCx温温度HRCx时间 HRCx炉炉子-1-1-1431-1-145-11-14511-149-1-114

21、31-1146-1114511149合计n合计/N-4345-4549-4346-45491343.25-43-43-45-4545-4549-49-4343-464645454949111442.750.25Pg 42交互作用的对比差异和计算?怎样计算交互作用的对比差异?将它们相乘在一起!温温度时间炉炉子温*时温*炉时*炉 温*时*炉HRC-1-1-1431-1-145-11-14511-149-1-11431-1146-111451114913111合计444n3.252.750.25合计/n1-1-111-1-1111-1-1111-11-1-1-1-1-111-1-1-11-11113

22、1-1-144440.750.25-0.25-0.25用相同的方法计算交互作用的大小.?Pg 43部分实施因子DOE部分实施因子设计什么时候启用?当变量数目使得全因子试验不切实际时.?当我们可以假定高阶交互作用可以忽略不计时.?当主效果和低阶交互作用最重要时.?当该试验是一个筛选性试验时.?筛选性试验用于确定哪一个变量,如果有的话,影响该因变量.Pg 45部分实施因子的主要想法1.效果的稀疏性?当有许多变量时,系统因变量可能主要受某些主效果和低阶交互作用的驱动2.投射特征?部分因子设计可以投射为部分重要因子的更高分辨率设计3.系列试验?有可能将 2个或更多部分因子试验组合在一起聚合成一个较大的

23、设计来估计因子和交互作用的影响.Pg 46一个二分之一部分实施因子设计实例?一黑带需要评估4个因子,每因子两水平,但是他做不起16个试验.?怎样增加第四个因子(时间)?用时间替代3因子交互作用!RunTempSprayConcT*ST*CS*CT*S*CTime1-1-1-1111-121-1-1-1-1113-11-1-11-11411-11-1-1-15-1-111-1-1161-11-11-1-17-111-1-11-181111111-111-11-1-11?Pg 47二分之一部分实施因子是全因子的一半!?该表展示 24全因子对比差异?该设计中,因子 D 与交互作用 ABC 同名.即

24、D=ABCRun I A B C D AB AC BC ABC ABCD11-1-1-1-1111-1121 1-1-1-1-1-111-131-1 1-1-1-11-11-141 11-1-11-1-1-1151-1-1 1-11-1-11-161 1-1 1-1-11-1-1171-1 11-1-1-11-1181 111-11111-191-1-1-1 1111-1-1101 1-1-1 1-1-1111111-1 1-1 1-11-111121 11-1 11-1-1-1-1131-1-1 111-1-111141 1-1 11-11-1-1-1151-1 111-1-11-1-116

25、1 111111111?换句话说,选出的用于进行试验的试验组合与 4因子交互作用项同名(所有项 都是+1).即I=ABCDPg 48部分实施因子设计练习?以这个矩阵作为起点,设计一 个二分之一部分因子试验以便用16个试验组合评估5个主效果.该试验的同名结果是什么?设计一个试验以便仅用8个试验组合评估5个主效果.该试验的同名结构是什么?这是一个什么类型的试验(一个什么样的-部分实施因子试验)?ABCDE-1-1-1-1-11-1-1-1-1-11-1-1-111-1-1-1-1-11-1-11-11-1-1-111-1-1111-1-1-1-1-11-11-1-11-1-11-11-111-11

26、-1-1-111-11-111-1-1111-11111-1-1-1-1-111-1-1-11-11-1-1111-1-11-1-11-111-11-11-111-11111-11-1-1-1111-1-111-11-11111-111-1-11111-1111-1111111111Pg 49部分实施因子试验总结?部分实施因子试验常常作为理想的初始试验以确定哪几个输入至关重要?在一个系列试验方案中通过增加试验组合或合并附加试验可以将部分因子设计转化为全因子设计?通过增加研究曲率的试验组合可以将部分因子设计转化为因变量表面轮廓测定设计?部分实施因子设计可以分区化并且可以象全因子设计一样使用中心点

27、?错误使用部分实施因子设计可能导致黑带遗漏重要的信息.慎用部分因子设计Pg 50作业?一工程师负责一个超声波清洗槽的工艺过程.没有超声波能量发生器的文件.他有一个量具能测量清洗槽 20处不同位置的超声波能量?因变量是超声波能量的平均值和标准差?因子(除泵外)为旋钮设置:0 至10?机组Train5,10中心Center5,10?除气Degas0,10带宽Bandwidth0,10?脉冲Burst5,10清除Sweep0,10?静态Quiet0,10泵Pump关,开?寻找两个因变量的显著主效果项并且为此建立一个模型.寻找显著的交互作用项和它们的同名结构.?这对交互作用的解释意味着什么?用优化工具运优化两个因变量.偏差比平均值更重要.?平均能量越大越好:指标=100,规格下限LSL=80?能量的标准差越小越好:指标=3,规格上限USL=8?数据在 Ultrasonic.mtw 文件中Ultrasonic.mtwPg 51

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|