ImageVerifierCode 换一换
格式:PPTX , 页数:22 ,大小:1.96MB ,
文档编号:3387780      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3387780.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(量化投资与机器学习课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

量化投资与机器学习课件.pptx

1、汇添富基金 吴振翔量化投资与机器学习2018.5.60.量化投资需要什么技术?量化投资与机器学习,问题的定义是什么?需要先定义量化投资,进而才能思考机器学习技术在其中的应用。1.我们感兴趣的机器学习技术机器学习技术发展日新月异,但在狭义的量化投资领域的应用才刚刚开始。数据获取与数据处理2022-8-7汇添富基金Source:Big Data and AI Strategies:Machine Learning and Alternative Data Approach to Investing,J.P.Morgan从海外经验来看,投资领域对于另类数据的使用已经起步,数据使用范围可谓相当多样。从

2、数据获取来看,主要来源如下:舆情文本、卫星图像、交通信息、物流信息、网络搜索、电商信息等。对应于这些数据来源,所需要的数据处理技术包括:自然语言处理、计算机视觉等。自然语言处理技术2022-8-7汇添富基金从数据处理和特征提取角度来看,目前自然语言处理技术已经较为成熟,可以对诸如新闻、公告等文本信息进行大规模处理。中文分词技术是处理中文文本数据的基础;词向量技术是将高维且正交的one-hot向量,转变为低维且具有几何意义的向量的技术。自然语言处理技术2022-8-7汇添富基金海外某公司现在已经开始提供实时的Twitter舆情数据,直观来看,Tweet Volume和Sentiment都没有很强

3、的领先性,但也不排除精细化处理后对投资能够起到作用。Source:http:/ Data and AI Strategies:Machine Learning and Alternative Data Approach to Investing,J.P.Morgan机器学习模型2022-8-7汇添富基金通过对大量非结构化的数据进行处理,成为数字化、向量化的数据集,进而通过机器学习算法进行建模和训练,是目前机器学习领域的主要方法论。工业界的机器学习模型主要解决以下问题:分类(classification)回归/预测(regression)其他,如生成模型,强化学习模型等机器学习模型的表述能力20

4、22-8-7汇添富基金以深度神经网络模型为例,早在1993年,就有学术研究从数学上证明:多层神经网络+非线性激励函数可以近似任何函数。近期实证研究表明,随着神经网络层数的增加,测试集的准确度逐渐提升;此外,在不增加神经网络层数,仅仅增加参数个数的情况下,模型的效果提升不明显;而在不改变参数个数的情况下,将层数从3层增加至11层,则可以显著提升模型效果。Source:Goodfellow,I.J.,Bengio,Y.,&Courville,A.(2017).Deep Learning2.量化投资与机器学习我们的实践以及思考机器学习,从入门到放弃?2022-8-7汇添富基金数据少,噪声大,投入还小

5、,只能做toy model?我们对股票市场有独到的理解!不需要大量数据和大量投入就能搞出好模型!相比于现有的量化模型,机器学习的模型和方法能够更好克服人为观测的偏差,如:市值因子为什么是市值取对数?反转因子为什么是区间收益率?风险为什么可以用标准差表示?现有量化投资的模型都是基于简单的人为观测逻辑,进行历史检验,获得较好效果之后进行使用的。而机器学习方法论是:对更为广泛的数据,基于机器学习的观测逻辑,进行历史检验,获得较好效果之后进行使用。已有一些成果超越了现有量化模型的效果。我们认为,随着数据量提升、投入资源加大,未来机器学习方法将带来量化投资领域的重大变革!广阔天地,大有可为2022-8-

6、7汇添富基金ICIR01234通信0.10330.652024.44%16.62%9.30%-3.65%-34.31%商贸零售0.10640.717522.57%12.57%2.66%-8.07%-22.24%房地产0.10430.772827.69%10.40%1.88%-5.91%-27.20%医药0.09620.829322.88%13.32%0.88%-6.73%-26.80%轻工制造0.11050.635824.91%12.95%2.85%-7.77%-20.67%电子元器件0.10660.836928.58%16.64%-1.04%-6.66%-31.90%传媒0.10430.55

7、6920.21%20.23%0.06%-5.88%-17.43%家电0.10100.546823.34%12.07%10.03%-0.37%-29.12%建材0.11010.667025.97%12.88%7.15%-7.63%-29.17%基础化工0.11681.045926.90%16.51%5.12%-10.88%-32.36%纺织服装0.11480.658220.62%16.10%10.38%-4.38%-27.76%汽车0.11120.831423.11%19.04%1.28%-4.37%-29.21%有色金属0.10910.605024.75%13.09%-0.75%-6.12%-

8、26.41%石油石化0.09930.424722.60%15.18%3.67%-3.65%-27.18%机械0.10690.841226.24%12.06%3.70%-3.97%-32.86%交通运输0.11700.725123.54%12.13%1.63%-6.04%-23.83%食品饮料0.10820.633924.38%13.17%6.33%-4.32%-28.61%钢铁0.12380.583323.26%11.98%7.15%-1.08%-26.45%建筑0.09940.580723.99%11.09%1.13%-5.58%-20.02%电力及公用事业0.11170.709620.96

9、%12.06%10.37%-7.16%-27.38%农林牧渔0.12490.802127.05%24.66%1.41%-13.08%-27.97%计算机0.09610.684826.70%17.86%-1.39%-6.05%-32.01%电力设备0.11370.850327.42%15.19%3.01%-5.78%-31.47%餐饮旅游0.09500.378718.75%18.75%-3.66%7.32%-14.26%煤炭0.10120.437414.10%10.08%7.50%-8.07%-11.16%综合0.08950.279811.13%3.26%5.48%10.25%-20.76%国防

10、军工0.09770.399022.21%10.90%9.13%-5.25%-16.60%银行0.08450.250413.02%7.96%3.73%-7.16%-11.64%非银行金融0.10130.373314.08%18.98%0.29%-2.98%-20.39%我们用机器学习得到的因子的效果:测试区间:2011年至2017年样本空间:中证全指在所有市值分层和行业分类上均有效,且因子强度均比较高ICIR01234size_00.11780.989326.07%16.13%2.90%-2.09%-37.74%size_10.12681.139827.17%18.88%6.09%-7.06%-

11、40.35%size_20.11771.024329.08%16.17%1.53%-6.98%-35.57%size_30.11261.059525.70%15.53%3.67%-4.34%-37.47%size_40.10451.029523.52%15.08%2.52%-9.69%-28.53%size_50.10871.011627.09%13.16%3.53%-7.98%-31.55%size_60.10430.918627.90%10.26%0.50%-8.71%-26.74%size_70.09690.846725.02%11.46%1.38%-8.30%-26.68%size_8

12、0.09180.757423.58%12.74%4.22%-12.14%-26.17%size_90.09110.662520.93%10.70%2.30%-6.06%-25.77%广阔天地,大有可为2022-8-7汇添富基金我们用机器学习得到的高频交易策略:测试区间:2017年样本空间:中证全指交易成本:单边千一下图为费后的累计收益(简单求和)曲线,平均日收益为0.13%00.050.10.150.20.250.30.352017010320170111201701192017020320170213201702212017030120170309201703172017032720170406201704142017042420170503201705112017051920170531201706082017061620170626201707042017071220170720201707282017080720170815201708232017083120170908201709182017092620171011201710192017102720171106201711142017112220171130201712082017121820171226非常感谢欢迎交流!

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|