ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:493KB ,
文档编号:3407038      下载积分:18 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3407038.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(离散数学第四章(第2讲)课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

离散数学第四章(第2讲)课件.ppt

1、3 关系的性质关系的性质自反性自反性根据根据R的关系矩阵和关系图,也可以判断的关系矩阵和关系图,也可以判断R是自反的。是自反的。定义定义 设是集合设是集合A A中的二元关系,对于任中的二元关系,对于任xAxA,R,R,即即 x(x(x x A A RR),),则称是自反关系。则称是自反关系。思考:集合思考:集合A 上的恒等关上的恒等关系系IA与与R的自反性有什么联的自反性有什么联系?系?001010110RM例:设A=a,b,c,R=是自反的。例:设X=1,2,3,1,22,11S2,12S1,23S000100000,000000010,000100010321SSSMMM2反自反性反自反性

2、定义定义 设是集合设是集合A A中的二元关系,对于任中的二元关系,对于任xAxA,R,R,即即 x(x(x x A A R R),),则称是反自反关系。则称是反自反关系。2,31,31,21,14S110100100RMS4既不是自反的,又不是反自反的既不是自反的,又不是反自反的思考:集合思考:集合A 上的恒等关系上的恒等关系IA与与R的反自反性有什么联系?的反自反性有什么联系?3对称性对称性定义定义:设:设R是是A中的二元关系,对于每一个中的二元关系,对于每一个x x,yAyA,如果如果每当有每当有xRy,则必有,则必有yRx,则称,则称R是是A中的对称关系中的对称关系.例:设例:设A=1,

3、2,3,R=,则则R是对称的关系是对称的关系.010101110RM思考:思考:RC与与R的对称性有什么联系?的对称性有什么联系?x x y(y(x x A A y y A A xRyxRy yRxyRx)定义定义1:设:设R是是A集合中的二元关系,对于每一个集合中的二元关系,对于每一个x x,yAyA,如果每当如果每当xRy和和yRx就必有就必有x=y,则称,则称R是反对称的关系。是反对称的关系。4反对称性反对称性即当且仅当即当且仅当 x x y(y(x x A A y y A A xRyxRy yRxyRx x=yx=y),R,R才是反才是反对称的。对称的。例:设例:设A=a,b,c,R=

4、是反对称的。是反对称的。定义定义2:设:设R是是A集合中的二元关系,对于每一个集合中的二元关系,对于每一个x x,yAyA,如果如果xy且且xRy,则则 R R,称称R是反对称的关系。是反对称的关系。)(yRxxRyyxAyAxyx思考:思考:RC与与R的反对称性有什么联系?的反对称性有什么联系?例:设例:设A=a,b,c,R1,R2,R3都是反对称的都是反对称的,1accbbaR,2ccbbaacaR,3accbaaR100001100,001010101,100001010321RRRMMM例:例:X=a,b,c,判断下列关系是否对称的,是否反对称的。判断下列关系是否对称的,是否反对称的。

5、,1cbabbaR,2cabccbaaR010001101,00010101021RRMM这两个二元关系既不是对称的,也不是反对称的。这两个二元关系既不是对称的,也不是反对称的。5传递性传递性 思考:复合运算与思考:复合运算与R的传递性有什么联系?的传递性有什么联系?定义定义:设:设R R是是A A中的二元关系,对于每一个中的二元关系,对于每一个x x,y y,zAzA,如如果每当果每当xRyxRy yRzyRz,就必有就必有xRzxRz,则称则称R R是可传递的,并表示成:是可传递的,并表示成:x x y y z(z(x x A A y y A A z z A A xRyxRy yRzyRz

6、 xRzxRz)例:设例:设X=a,b,c,判断下列关系是否满足传递性质。,判断下列关系是否满足传递性质。,1cbcabaaaR,2baR,3cabaR4R()x y z xAyAzAxRyyRzxRz 以上关系都满足传递性质。以上关系都满足传递性质。而二元关系而二元关系R5不具有传递性不具有传递性.,5accbbaR()x y z xAyAzAxRyyRzxRz 例例:判断下列二元关系的性质。判断下列二元关系的性质。(1)设)设X=1,2,33,13,22,11R性质有:反自反,反对称,传递性质有:反自反,反对称,传递3,22,11,12R性质有:反对称性质有:反对称 3,32,21,13R性质有:自反,对称,反对称,传递性质有:自反,对称,反对称,传递 xER4性质有:自反,对称,传递性质有:自反,对称,传递 5R性质有:反自反,对称,反对称,传递性质有:反自反,对称,反对称,传递 性质有:自反,反自反,对称,反对称,传递性质有:自反,反自反,对称,反对称,传递 若X=,则X上的空关系具有什么性质?

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|