ImageVerifierCode 换一换
格式:PPT , 页数:58 ,大小:770.50KB ,
文档编号:3407788      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3407788.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第2章+真空技术的稀薄气体理论课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第2章+真空技术的稀薄气体理论课件.ppt

1、真空物理与技术真空物理与技术第2章 真空技术的稀薄气体理论第二章第二章 真空技术的稀薄气体理论真空技术的稀薄气体理论l气体定律l气体分子运动论l气体中的输运现象气气 体体 定定 律律物质的物理态物质的物理态l分子的聚合体u固态、液态或气态u取决于分子间相互作用力的强度和每个分子的平均动能l分子间毫无相互作用的物理态称为理想气体u分子都是微小的球体u它们的体积于气体实际所占的空间比非常小u分子间毫无作用力u它们完全无规则地沿直线运动u分子间碰撞完全是弹性碰撞玻义耳玻义耳-马略特定律马略特定律lM一定,等温变化u一定质量的气体,当温度保持不变,它的压强和体积的乘积等于常量uPV=常数uP1V1=P

2、2V2u真空技术中PV表示气体量 实际真空系统:PV=CM查理定律查理定律lM一定,等容变化u一定质量的气体,在恒定容积下,气体的压力随温度线性变化uPt=P0(1+t)(摄氏温标)u=1/273ut上升1,P上升1/273uPT=P0T(绝对温标)uP1/P2=T1/T2盖盖-吕莎克定律吕莎克定律lM一定,等压变化u一定质量的气体,压力保持不变时,它的体积随温度线性变化uVt=V0(1+t)nV0:0时体积nVt:t 时体积n:等压膨胀系数1/273uVT=V0 TuV1/V2=T1/T2一般气体定律一般气体定律lP0V0T0-P2V2T2u先等压膨胀到P1V1T1n盖-吕莎克定律 P0=P

3、1u然后等温膨胀到P2V2T2n玻义耳定律 T1=T2uP0V0/T0=P2V2/T2uPV/T是恒定值10100201221220(/)(/)(/)(/)VV T TV TTVV PPV PP阿伏加德罗定律阿伏加德罗定律l克分子u以克为单位,数值上等于物质的分子量的重量u一克分子氧是32克,一克分子氢是2.016克l阿伏加德罗定律u不同种类的气体在同温同压下,等容积内含的分子数相同u一标准体积的气体质量正比于它的分子量u0,760Torr,1克分子任何气体的体积是22.4升l普适气体常数u1克分子气体 PV/T=R0lPV=(W/M)R0T(理想气体状态方程)分子密度分子密度l阿伏加德罗常数

4、NAu1克分子中的分子数u6.023x1023l单位体积分子数un=(W/M)(NA/V)=(NA/R0)(P/T)uP=760Torr,T=273.16Kn=2.687x1019分子数/厘米3l波尔兹曼常数uk=R0/NAuP=n(R0/NA)T=nkT分子密度分子密度道尔顿分压定律道尔顿分压定律l不起化学作用的混合气体总压强不起化学作用的混合气体总压强等于各种气体分压强的总和等于各种气体分压强的总和li.e.If.uNt=N1+N2+N3.uPt=P1+P2+P3.lThen.uP1V=N1kTuP2V=N2kTlTotal Pressure=Sum of“Partial Pressure

5、s”lIdeal gas.Non-interactingCO2的的PV曲线曲线lA,B:高温情况下,符合玻义耳定律的双曲线,符合理想气体假设lC出现拐点lDE完全不同于理想气体的双曲线uL M 气态u沿着平台N-O,系统体积变化而温度、压强不变。N点是气态,O点是液态,K点系统一部分是液态u每条曲线只有一个平台,即在给定温度下,只有一个使气体液化的压强l比曲线C温度更高时,没有能使气体液化的压强,P叫做临界点l压强越高,发生液化过程的温度也越高,气体液化的温度称为沸点,取决于系统压强l分子施加于周围的气体和液体的压强称为蒸气压,蒸气压取决于物质的温度气气-液相变化液相变化l液体的沸点u蒸气压等

6、于环境压强时的温度u标准沸点-对应于1个大气压时的蒸气压u曲线右侧为蒸汽,左侧为液体水的蒸气压曲线20C时,水的蒸汽压17.5Torr 水银的蒸汽压10-3Torr液液-固相变化固相变化l大气压下对应于液-固变化的温度称为凝固点或熔点凝固时膨胀凝固时收缩液-固转变曲线三相点三相点l蒸气压曲线上各点液体和蒸气共存l凝固点曲线上各点固体和液体共存l两条曲线交叉点称为三相点l三相点以下,不经液态直接升华沸腾、凝固和升华曲线气体分子运动论气体分子运动论气体的压强气体的压强l压强u大量气体分子对器壁不断碰撞的结果2iixidIn mv dAdt首先考虑单个分子在一次碰撞中对dA的作用然后考虑一段时间dt

7、内所有分子施加与dA的总冲量分子施加于dA的冲量是2mvix宏观压力dIdt22iixiixiidIPn mvmnvdtdAdA气体压强气体压强213Pnmv2xPnmv(,)2P3P nvPn,数值上等于单位体积气体分子总动能的2/3统计平均量,统计规律,不是力学规律212mv温度的微观解释温度的微观解释u气体分子的平均动能只于温度有关u与热力学温度成正比u温度标志着物体内部分子无规则运动的剧烈程度l能量均分定理u u粒子在每一自由度上的能量为203WPnPVR TPM从和气体状态方程出发,消去1k2T222yz111222xmvmvmv3k2TP=nkT气体分子的速率分布气体分子的速率分布

8、l气体分子速率分布的定性说明u分子处于无规则的运动和不断的碰撞,速率不断变化n能量守恒、动量守恒u平衡状态时,密度分布均匀,有确定的P,Tn说明服从大小一定的分布u分布:将粒子按某一物理量的大小进行分类,然后统计其相应的数目u分子速率分布就是要知道各速率间隔内分子的百分比以及大部分分子分布在哪个速率区间速率分布函数速率分布函数lf(v)的物理意义:表示速率在v附近单位速率间隔内的分子数占总分子数的百分比u平衡条件下粒子数守恒u气体分子各向同性,同种气体分子u分子间引力忽略()dNf v dvN0()1f v dvN表示一定量气体分子总数dN表示速率分布在某一区间v-v+dv内的分子数dN/N表

9、示分布在这一区间内的分子数百分比不同速率附近取相等间隔,dN/N一定不同,即比率与速率相关,与v的函数正比如果所取间隔越大,则分子数越多,即dN/N越大,dv足够小时dN/N与dv成正比Maxwell-Boltzmann分布分布232224()2mvkTdNmev dvNkT23222()4()2mvkTmf vevkT速度为0的分子几乎没有速率很大的分子数很少对大量分子体系才成立速率严格等于某一具体数值的分子数没有意义最可几速率最可几速率lf(v)极大值对应的速率叫做最可几速率vm(vp)u分布在vm所在的区间分子比率最大nH2=1572m/secnN2=421m/secnH2O=525m/

10、sec()0df vdv221.44mkTRTRTvmMMl温度升高时,气体中速率较小的分子减少,而速率较大的分子增加,最可几速率变大,曲线峰值移向速率大的一方,单总面积等于1,所以温度升高曲线变平坦221.44mkTRTRTvmMM平均速率平均速率l平均速率:大量分子速率的算术平均值val方均根速率 l当分子用速度直接影响研究过程(如气流)时用算术平均值,而当分子动能影响过程时用方均根速率v331.73kTRTRTvmMMMRTMRTmkTva59.188分子迁移分子迁移l描述碰撞过程的两个重要的物理量u平均自由程(Mean Free Path MFP)nHow far does a mol

11、ecule go before it strikes another?u碰撞频率(Impingement rate)Surface FluxnHow many molecule strike the surface in a given period of time?u大气中,MFP很短,Surface Flux 很大u高真空中,MFP很长,Surface Flux很小平均自由程平均自由程l自由程u一个分子连续两次碰撞间经过的距离l平均自由程u所有分子彼此碰撞间经过的平均距离u一个分子在给定时间内连续碰撞间经过的平均距离22kTd P35 10cmTorrP25C空气温度恒定时,平均自由程和压

12、强成反比平均自由程平均自由程50 meters 10-6 torr5*10-5 m1 torr 50 micrometers5*10-8 m 1000 torr 50 nanometers离子和电子的平均自由程离子和电子的平均自由程l离子(或电子)从一个分子碰撞到另一个分子经过的距离,它们本身的碰撞不考虑u离子n速度很快,可认为分子静止n u电子n速度更快,电子直径忽略不计2e24eg空气分子在标准状态下的平均自由程、平均速率和碰撞频率d=3.5x10-10m 平均分子量29 T=273K P=1.01x105Pa2238102521.38 102736.9 101.41 3.14(3.5 1

13、0)1.01 10kTd Pm388 8.314 273447/3.14 29 10aRTvm sM9184476.5 106.9 10avZs标准状态下,分子平均自由程约为其直径的200倍每秒碰撞6.5亿次分子入射率分子入射率l单位时间内与表面碰撞的分子数14anv2013.78 10s-2 TorrP cm25C 空气分子入射率分子入射率单分子层单分子层2022.3 10MTP62.2 10TorrP秒25C 空气吸附剂量:1Langmuir=10-6Torr.s,数量级上与1个单分子层相当2138nkTm气体中的输运现象气体中的输运现象粘滞态和分子态粘滞态和分子态l两种重要的气体流动形式

14、u粘滞态u分子态l平均自由程和容器尺度的比值u平均自由程的数量级和容器的线度u分子间碰撞与分子和器壁间的碰撞粘滞态和分子态粘滞态和分子态lMFPd “sparse”/“vacant”u气体分子密度非常小u气体分子只和器壁发生碰撞u单个分子u分子间没有动量和能量传递l对单个分子行为研究l一种新的形态l中、高、超高真空粘滞态和分子态粘滞态和分子态输运输运l输运现象u由于气体分子热运动,使存在于气体中不均匀性逐渐消除,并引起某一物理量从一处迁移至另一处的现象u本质上输运发生在气体从不平衡态到平衡态的过程中u尽管分子热运动速度相当大,但输运完成有时需要很长时间u输运现象和分子自由程密切相关l输运方程1

15、3anvGds输运种类输运种类粘滞态分子态粘滞性(动量)由于气体各部分流动速度差异内摩擦粘滞性分子拽力热传导(能量)由于气体各部分温度差异热传导热传导扩散(质量)由于气体各部分密度不同扩散热扩散由于容器的温度梯度热扩散热流逸粘滞现象粘滞现象现象:现象:A 盘自由,盘自由,B 盘由电机盘由电机 带动而转动,慢慢带动而转动,慢慢 A 盘盘 也跟着转动起来。也跟着转动起来。解释:解释:B 盘转动因摩擦作用力带盘转动因摩擦作用力带 动周围的空气层,这层又动周围的空气层,这层又 带动邻近层,直到带动带动邻近层,直到带动A 盘。盘。这种相邻的流体之间因速度不同,引起的这种相邻的流体之间因速度不同,引起的相

16、互作用力称为相互作用力称为内摩擦力内摩擦力,或,或粘滞力粘滞力。BA满足牛顿第三定律。表示粘性力成对出现系数(或粘度),称为内摩擦系数,粘滞比例系数,Szufz0dd实验证明:实验证明:流速不均匀,沿流速不均匀,沿 z 变化(或有梯度)变化(或有梯度),流速梯度流速梯度zudd不同流层之间有不同流层之间有粘滞力粘滞力f流速大的流层带动流速小的流层,流速大的流层带动流速小的流层,流速小的流层后拖流速大的流层。流速小的流层后拖流速大的流层。dS 的上层面上流体对下层面上流体的上层面上流体对下层面上流体的粘滞力为的粘滞力为 df,反作用为,反作用为 df,这,这一对力满足牛顿第三定律。一对力满足牛顿

17、第三定律。测定测定 实验实验 A,B 为两筒,为两筒,C 为悬丝,为悬丝,M 为镜面;为镜面;A 保持恒定转速,保持恒定转速,B 会会跟着转一定角度,大小可通过跟着转一定角度,大小可通过 M 来测定,从而知道粘性力大小,来测定,从而知道粘性力大小,流速梯度及面积可测定,故粘度流速梯度及面积可测定,故粘度可测。可测。CMBA实验实验测定测定热传导现象热传导现象现象:物体内各部分温度不均匀时,将有热量由温度较现象:物体内各部分温度不均匀时,将有热量由温度较高处传递到温度较低处,这种现象叫做高处传递到温度较低处,这种现象叫做热传导现象热传导现象假设沿假设沿 z 方向温度梯度最大,实验证方向温度梯度最

18、大,实验证明,单位时间内,通过垂直于明,单位时间内,通过垂直于z 轴的轴的某指定面传递的热量与该处的温度梯某指定面传递的热量与该处的温度梯度成正比,与该面的面积成正比,度成正比,与该面的面积成正比,负号负号“-”表示热从温度高处向温度低处传递,表示热从温度高处向温度低处传递,为导热系数。为导热系数。21TT 2T1TSzzdSdtzTdQz0dd扩散现象扩散现象现象:两种物质混合时,如果其中一种物质在现象:两种物质混合时,如果其中一种物质在各处的密度不均匀,这种物质将从密度大的地各处的密度不均匀,这种物质将从密度大的地方向密度小的地方散布,这种现象叫方向密度小的地方散布,这种现象叫扩散现象扩散

19、现象设沿设沿z方向有密度梯度,实验证明,单位时间内通过垂直方向有密度梯度,实验证明,单位时间内通过垂直于于z轴的某面传递的质量与该出的密度梯度成正比,与该轴的某面传递的质量与该出的密度梯度成正比,与该面面积成正比面面积成正比负号负号“-”表示质量从密度高处向密度低表示质量从密度高处向密度低处传递,与密度梯度方向相反,处传递,与密度梯度方向相反,D 为为扩散扩散系数。系数。dSdtzDdMz0ddzn(z)dSdM输运过程的微观解释输运过程的微观解释l分子的热运动虽然是气体内输运过程的一个重要因素,但却不是唯一的主要因素。l在研究输运过程时,我们还必须注意到另一个因素,即分子间的碰撞。分子间的碰

20、撞越频繁,分子运动所循的路线就越曲折,分子由一处转移到另一处所需的时间就越长。l所以,分子间相互碰撞的频繁程度直接决定着输运过程的强弱。粘滞现象的微观解释粘滞现象的微观解释气体动理论的观点(微观上)认为,这种气体动理论的观点(微观上)认为,这种粘滞力是动粘滞力是动量传递的结果量传递的结果。气体既做整体运动气体既做整体运动,又做分子热运动又做分子热运动同一时间,平均来看,有等量的气同一时间,平均来看,有等量的气体分子从上、下两个方向穿过体分子从上、下两个方向穿过 P 面,面,这些分子既带有热运动的能量和动这些分子既带有热运动的能量和动量,还带有定向运动动量。量,还带有定向运动动量。定向动量定向动

21、量在垂直于流速的方向上在垂直于流速的方向上净迁移净迁移由于上层分子动量大于下层,故上层定向动量减少,下层定向由于上层分子动量大于下层,故上层定向动量减少,下层定向动量增加,类似摩擦力。动量增加,类似摩擦力。v31气体的粘滞系数气体的粘滞系数 气体的粘滞性随温度增加而增加液体的粘滞性随温度增加而减小与气体密度无关?,.,TTTvDPP分子间距极高压强和低压强时与预测不符分子间力起作用分子间无碰撞,无动量交换动量迁移只发生在分子与器壁之间C热传导现象的微观解释热传导现象的微观解释4921TT 2T1TSzz气体动理论认为:气体动理论认为:a.a.温度较高的热层分子平均动能大,温度较高的热层分子平均

22、动能大,温度较低的冷层分子平均动能小;温度较低的冷层分子平均动能小;b.b.由于两层分子碰撞和掺和,从热层由于两层分子碰撞和掺和,从热层到冷层出现到冷层出现热运动能量的净迁移热运动能量的净迁移。在时间在时间dt内,沿内,沿z轴正方向输运的总热运动能量轴正方向输运的总热运动能量dQ等于等于A、B两部分在此时间内两部分在此时间内交换的分子数乘以每交换一对分子所引起交换的分子数乘以每交换一对分子所引起的能量改变的能量改变。热传导系数热传导系数vcv31不变,热绝缘与压强无关与气体种类相关与气体种类有关与温度相关DPCCTvv扩散现象的微观解释扩散现象的微观解释l扩散u各部分气体密度不同时,气体由密度

23、大处向密度较小处渗透l自扩散uP和n到处一致的情况下一种气体扩散于同类气体中dndNDdz ddMDdsdtdz 单位时间通过单位面积的迁移质量和该处密度梯度成正比13aDv 反比与P,压强越高,扩散越困难正比与va 温度越高,质量越小,扩散越容易,不同气体扩散速率不同气体的互扩散气体的互扩散l性质互异的气体间的扩散u气体的扩散过程比压强平衡过程慢得多un处处一致u在气体混合过程中,空间气体成分不断变化,趋向均匀,任何时刻p及n不变1211222112211()()3aaDv nv nnnD ,和和D之间的关系之间的关系53111DDccvv根据实验结果,/cv介于1.3到2.5之间,D/介于

24、1.3到1.5之间,具体的数值因气体的不同而异。理论值与实验值出现了较大的偏差在于理论中未考虑分子按速率分布。气体分子与器壁碰撞气体分子与器壁碰撞l粘滞态弹性碰撞l分子态余弦定律(克努曾定律)u分子态情况下,分子与器壁的作用分为“凝结、停留、蒸发”三步u分子离开表面时,在与表面法线成角的一定立体角内分子数与cos成正比u物理意义n固体表面对气体分子的作用:分子忘掉原有运动,漫反射n分子在固体表面停留一段时间,分子与表面能量、动量交换的前提外摩擦力(分子拽力)外摩擦力(分子拽力)l分子拽力u气体分子在空间没有碰撞,直线飞行u分子在表面停留的时间足够将能量迁移至分子u如果表面在运动,它就能将速度分量迁移至分子puuRTpmunvFa0241正比于p,和板A的u与两板间距无关随温度升高而降低,与气体种类相关(分子量减小而减小)分子态气体热传导分子态气体热传导l自由分子传导 平均能量2kT1010risiTrTsTTTrTiTT完全热平衡,完全弹性碰撞,一般情况下分子态气体热导正比与压强PpTTTvTTkvkTpTTknvEisiiisiiiri)(2)(241)(241适应系数 分子泻流分子泻流12N()2AppmkT热流逸热流逸121222p Ap AmkTmkT1122pTpT当测量压强的量具温度与真空容器不同时,测量值和实际值不符平衡时压强与温度平方根成正比

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|