1、第三章第三章 一维搜索方法一维搜索方法第一节第一节 概概 述述0,1,2,kkkk1kdxxkkkk1kffdxx称为一维搜索称为一维搜索 求多元函数的极值点需要进行一系列的求多元函数的极值点需要进行一系列的一维搜索。一维搜索。一维搜索是优化方法的基础。一维搜索是优化方法的基础。利用解析法:利用解析法:0*注意注意 dGdxdxdx21fffTT GddxdxT2T21ff 0f*TGddxdT GddxdTT*f缺点:缺点:有时求导困难或无法求导。有时求导困难或无法求导。数值解法的基本思路:数值解法的基本思路:先确定先确定 所在的搜索区间,然后根据区间所在的搜索区间,然后根据区间消去法原理不
2、断缩小此区间,从而获得消去法原理不断缩小此区间,从而获得 的数的数值近似解。值近似解。*x*x第二节第二节 搜索区间的确定与区间消去法原理搜索区间的确定与区间消去法原理一、确定搜索区间的外推法一、确定搜索区间的外推法开始开始给定给定00h,1101ff 2202ffh21ff 00hh33023ffh232ff 32322121ffff0h 13ba31ba结束结束YYYNNN二、区间消去法原理二、区间消去法原理三、一维搜索法的分类三、一维搜索法的分类试探法试探法插值法或函插值法或函数逼近法数逼近法按某种给定规律来确定区间内插入点按某种给定规律来确定区间内插入点的位置,此点位置的确定仅仅按照区
3、的位置,此点位置的确定仅仅按照区间缩短如何加快,而不顾及函数值的间缩短如何加快,而不顾及函数值的分布关系。分布关系。黄金分割法黄金分割法根据某些点处的某些信息,如函根据某些点处的某些信息,如函数值、一阶、二阶导数等,构造数值、一阶、二阶导数等,构造一个插值函数来逼近原来函数,一个插值函数来逼近原来函数,用插值函数的极小点作为区间的用插值函数的极小点作为区间的插入点。插入点。二次插值法、三次插值法二次插值法、三次插值法第三节第三节 一维搜索的试探法一维搜索的试探法黄金分割法,又称黄金分割法,又称0.6180.618法法适用范围:适用范围:a,ba,b 区间上的任何单谷函数求极值问题。对区间上的任
4、何单谷函数求极值问题。对函数除要求函数除要求“单谷单谷”外,不做其它要求,甚至外,不做其它要求,甚至可以不连续。可以不连续。要求:要求:插入点插入点 的位置相对于区间的位置相对于区间 a,ba,b 两端点具有对称性。两端点具有对称性。21abb1aba21:1210120.618 搜索过程:搜索过程:1 1)给出初始搜索区间)给出初始搜索区间 a,ba,b 及收敛精度及收敛精度 ,将将 赋以赋以0.6180.6182 2)按坐标点计算公式计算)按坐标点计算公式计算 2121f,f,3 3)根据区间消去法原理缩短搜索区间)根据区间消去法原理缩短搜索区间4 4)检查区间是否缩短到足够小和函数值收敛
5、)检查区间是否缩短到足够小和函数值收敛足够近,如不满足返回足够近,如不满足返回2 2)5 5)如果条件满足,则取最后两试验点的平均值)如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解作为极小点的数值近似解开始开始给定给定b,a,222111ffab0.618affab0.618b21ff 22221211ffab0.618affa11112122ffab0.618bffbabab0.5*结束结束NNYY例1 对函数对函数 ,当给定搜索区间,当给定搜索区间 时,试用黄金分割法求极小点时,试用黄金分割法求极小点 。2f253*解:解:5b3aabb1350.6185aba2350.61
6、830.0561.944 11fy 0.11522fy 7.6671.944b3aabb131.9440.6181.9441.111aba231.9440.61830.056 11fy 0.98722fy 0.115第四节第四节 一维搜索的插值法一维搜索的插值法插值法或函数逼近法插值法或函数逼近法插值法与试探法的区别:插值法与试探法的区别:试探法:不考虑函数值的分布试探法:不考虑函数值的分布插值法:不仅考虑函数值的分布,而且还要考插值法:不仅考虑函数值的分布,而且还要考虑函数的导数信息虑函数的导数信息 多项式是函数逼近法的一种常用工具。多项式是函数逼近法的一种常用工具。在搜索区间利用若干实验点
7、处的函数值构在搜索区间利用若干实验点处的函数值构造低次多项式,作为函数的近似表达式。造低次多项式,作为函数的近似表达式。200000f21fff 01一、牛顿法(切线法)一、牛顿法(切线法)0ff0100 0001ff 0,1,2,kffkkk1k 牛顿法的计算步骤:牛顿法的计算步骤:1 1、给定初始点、给定初始点 ,控制误差,控制误差 ,并令,并令00k 2 2、计算、计算kkf,f 3 3、求、求kkk1kff 4 4、若、若 ,则求得近似解,则求得近似解 停止,停止,否则转否则转5 5。k1k1k*5 5、令、令 ,转,转2 2。1kk开始开始给定给定,0ffffffff0100 011
8、*结束结束10 YN例例2:2:给定给定 41664f234试用牛顿法求其极小点试用牛顿法求其极小点*解:解:4334f23 1212f2 给定初始点给定初始点0.01100k 361f 241f 0.52436111.5 1k 2k13.50.5f 04f30.5f 844f 4313.50.5240434.5 0 二、二次插值法(抛物线法)二、二次插值法(抛物线法)二次插值法又称抛物线法,是利用二次插值法又称抛物线法,是利用 在在单谷区间中的三点单谷区间中的三点 的相应函数值,作如下的二次插值多项式:的相应函数值,作如下的二次插值多项式:fy 321 321fff 2210aaaP它应满足
9、条件:它应满足条件:2121101aaaP2222102aaaP2323103aaaP1y 1f2y3y2f 3f0a2aPp21p21pa2a2122212211yyaa3223222321yyaa1332213222122123123221yyya133221321213132yyya221pa2a213132321322212212312322yyyyyy21令:13131yyc32112122cyyc2131pcc21计算步骤:计算步骤:1 1、给定初始搜索区间、给定初始搜索区间 a,ba,b 和精度和精度2 2、在区间、在区间a,ba,b内取点:内取点:,ba0.5a,21b3计算其
10、函数值计算其函数值 332211ff,ff,ff构成三个插值点构成三个插值点333222111f,P,f,P,f,P3 3、计算、计算 及及p ppff 4 4、判断、判断 ,若满足,停止,否则,若满足,停止,否则,缩小区间,转缩小区间,转2 2继续迭代。继续迭代。2p开始开始给定给定b,a,332221131ffffba0.5ffba21321121f2f1313cc31pc2ff10.5cc2pp*结束结束2p 2pff2pffp2p22323ffffp1p1ff p2p22121ffffp3p3ffN NY YY YY YY YN NN NN N例:例:用二次插值法求用二次插值法求 的最
11、优解。的最优解。107f2已知初始区间已知初始区间22,88,取终止迭代点距精度,取终止迭代点距精度=0.01=0.01。解:解:(1 1)确定初始插值点)确定初始插值点 18ff38b0ff12a33110ff25ba2122(2 2)计算插值函数极小点)计算插值函数极小点1cf1f2c3f1f3c32112213125.2ffp5.3cc*5.0p2131p(3 3)缩短收缩区间)缩短收缩区间f2fp2p1-2.25fpf23.50f2f350f1f12p22311:新区间(4 4)计算新插值函数极值点)计算新插值函数极值点3.5*0.51c0c31p21(5 5)判断迭代终止条件)判断迭
12、代终止条件02p2.25f*3.5*对于二次函数用二次插值法求优,只需一对于二次函数用二次插值法求优,只需一次插值计算即可。对于非二次函数,随着区间次插值计算即可。对于非二次函数,随着区间的缩短使函数的二次性态加强,因而收敛也是的缩短使函数的二次性态加强,因而收敛也是较快的。较快的。二次插值法收敛速度快,有效性好,但程二次插值法收敛速度快,有效性好,但程序较复杂,可靠性稍差。适用于多维优化的一序较复杂,可靠性稍差。适用于多维优化的一维搜索迭代。维搜索迭代。第五节第五节 工程设计应用工程设计应用一、曲柄摇杆机构的优化设计一、曲柄摇杆机构的优化设计1 1、机构简介机构简介具有以下三个特性:具有以下
13、三个特性:1 1)急回性质)急回性质 当曲当曲柄匀速转动时,摇杆柄匀速转动时,摇杆左右摆动的平均速度左右摆动的平均速度不同,其比值为机构不同,其比值为机构的行程速比系数的行程速比系数/=/180180221211212112vC CttKvtC Cttt2)压力角与传动角 机构从动件受力的方向与运动方向所夹的锐角为机构瞬间压力角。与压力角互余的角为该点的传动角。机构瞬间传动角越大,其运动就越容易。故机构传动角是衡量机构运动难易程度的一项重要指标。机构最小传动角的可能位置是曲柄与机架重叠共线和展开共线时的位置。3)死点位置如果机构以摇杆为主动件,在曲柄与连杆的两次共线位置处,从动件的传动角 ,压
14、力角 ,机构处于自锁状态。该位置称为机构的死点位置。0 90工程应用中曲柄摇杆机构的设计问题一般是给定机构的行程速比 、摇杆的摆角 及长度 ,确定机架长度 、曲柄长度 、连杆长度 ,要求设计机构能够满足传动角条件 。K4l1l2l3l min2一般设计问题3传统设计方法简介(图解法)传统设计方法直观、易懂,但设计周期长、精度差、可行设计结果众多,一旦设计要求过于苛刻或选择的许用值 过大,设计会出现死循环。4.曲柄摇杆机构的优化设计(1)目标函数的确定曲柄摇杆机构的最小传动角 是对机构进行动力分析和运动分析的重要指标,因此以最小传动角最大为目标函数。minminmax,13f x其中arccos
15、2222341213 4lllll larccos2222341223 4lllll l若 ,则 ,否则 。故机构最小传动角为9023218032minmin,13 针对不同情况,机构最小传动角及最大传动角的变化规律如图所示。其中曲柄与机架重合共线为初始位置。(2)设计变量的确定待定的设计参数为机架长度、曲柄长度、连杆长度,但实际的设计变量只有一个。如传统图解法,一旦曲柄支点A位置选定,其它设计参数随之确定。基于几何关系,在三个设计参数中,取曲柄长度为设计变量,即 。2xl(3)设计参数间的几何关系 2 sin2124C Cl()()2()()cos212223333C Clxlxlx lx2
16、(1 cos)2(1 cos)22123C Cxl则()()cos()22134432llxl2l lxAC D其中 902221AC DAC C 180arcsinsin9032112lxAC CC Carcsinsin90312lxC C(4)设计变量的取值范围以 为例,当曲柄支点A由P点向 点顺时针移动时,(或)在渐增,渐小,其机构最小传动角呈单峰函数变化。对应设计变量 和 近似有 ,机构最小传动角呈最小,对应 则有 。22C2lx3lminxmaxxmin0*x*min寻优区间起始点minxminminsintan123123C ClxC Clx寻优区间终点 在 处,有 。maxx2C
17、max212xC C5 5设计实例设计实例设已知颚式破碎机的行程速比系数K=1.2,颚板长度 300mm,颚板摆角 ,(曲柄长度80mm),求连杆的长度,并验算最小传动角 是否在允许的范围内。min(1 cos)2sin12C CxCDl35ABlmin(1)解析法设计 80mm,303.677mm,309.289mm,最小传动角 。2l 3l 1l min44.640(2)优化设计 设计时不必限制曲柄长度,以作为设计变量 ,采用0.618法,结果如下:304.951mm,85mm,228.716mm,2lx*1l*2l*3l*min46.795二、曲柄滑块机构的优化设计二、曲柄滑块机构的优化
18、设计1.1.机构简介机构简介机构具有以下三个特性:1)急回性质 18018022112112HvttKHvtttt 2)压力角与传动角 minarccos23ell 3)死点位置 当机构的压力角 、传动角 时,机构不能运动,该位置称为机构的死点位置。900 若滑块为主动件时,曲柄与连杆共线的位置为死点位置,当曲柄为主动件时,曲柄滑块机构的曲柄与连杆共2 2一般设计问题一般设计问题给定机构的行程速比系数 、机构滑块行程 确定曲柄长度 、连杆长度 、偏心距 ,要求设计的曲柄滑块机构能够满足传动角条件 线且与导路垂直时是机构的死点位置。KH2l3le min3 3传统设计方法(图解法)传统设计方法(
19、图解法)传统设计方法直观易懂,但设计周期长,计算精度差,可行设计结果众多,难以实现最优,尤其是一旦设计要求过于苛刻或选择的许用值过大,则设计会出现死循环,导致设计无解。4 4曲柄滑块机构的优化设计曲柄滑块机构的优化设计(1)目标函数的确定 曲柄滑块机构的最小传动角是对机构进行动力分析和运动分析设计的重要指标。以机构运动最小传动角最大为目标函数,即 minmax()arccos()23fle lxmin()()23fle lx或(2)设计变量的确定 待定的设计参数为曲柄长度 、连杆长度 、偏心距 ,但实际设计变量只有一个。2l3le一旦曲柄支点 位置选定,即偏心距 确定,其它设计参数随之确定。基
20、于几何关系,在三个设计参数中取曲柄为设计变量,即 。Ae2xl(3)设计参数之间的几何关系()()2()()cos2223333Hlxlxlx lx2(1 cos)2(1 cos)223Hxlsinsin()()33213lxlxHAC Ce lxsin()223elxH则 另 则(4)设计变量 的取值范围 xminminsintan33HlxHlxmin(1cos)2sinHxmax2Hx(5)优化设计数学模型12(1 cos)sin(4)min()2(1 cos)2(1 cos)(1 cos)()02sin()02222212HxHxf xHHxHg xxHgxx机构最小传动角的变化曲线
21、5 5设计实例设计实例试设计一曲柄滑块机构,设已知滑块行程速比系数 1.5,滑块的行程 50mm,偏心距20mm。求其最大压力角 。K H e max三、三、凸轮机构的优化设计凸轮机构的优化设计1.机构简介(1)机构特点 凸轮机构简单紧凑、动作可靠,易实现从动件预定的运动规律,但由于凸轮与从动杆是点线接触,易磨损,故多用于传递动力不大的控制机构和调节机构中。(2)评价机构运动性能参数 tandd000svOPrsrsrs 为使机构紧凑,减小基圆半径,在其它条件不变的情况下,必然会增大机构压力角,从而不利于机构运动。故凸轮基圆半径不能过小。机构压力角条件是判别机构运动难易程度的主要依据。(3)机
22、构许用压力角 、12凸轮在升程和回程过程中,由于凸轮与从动件间摩擦力以及从动杆变速运动附加惯性力的存在,机构实际压力角与理想状态下机构压力角有差异。在升程过程中机构实际压力角为 s1在回程过程中机构实际压力角为 h2其中 arctan()f机构常用的设计压力角条件为:升程 max 或 max()1或 max 1令 1回程 max 或 max()2或 max 2令 2(4)凸轮机构正偏置的原因 tandd222200seOPesresre2.2.一般设计问题一般设计问题一般是给定从动杆的行程 、从动杆升程运动规律 、升程运动角 、从动杆回程运动规律 和回程运动角 ,希望设计的凸轮机构满足压力角条
23、件,即 和 且机构凸轮基圆半径 越小越好。H()11sf1()22sf3max11max220r3.3.传统设计方法传统设计方法(1 1)采用经验公式)采用经验公式 0.9(1020)0rdmm或或(1.62.0)0rr(2)用图解法 4.4.优化设计优化设计(1 1)寻优确定)寻优确定 Ontandd1111sxs则则tandd1111sxsmaxtandd1111sOns(10,1(1 1)寻优确定)寻优确定 Om则则tandd2222sxstandd2222sxsmaxtandd2222sOms(0,23(3)确定最小基圆半径 及最佳偏心距*0r*etan21Oncdsin()sinsi
24、n(180)cotcot121212abOnOmOnOm最佳偏心距*min(,)ecd ab2cos1OnOc()tan221abOaabOn最小基圆半径*max(,)0rOc Oa5.5.设计实例设计实例四、按渐开线展角求其压力角四、按渐开线展角求其压力角tanKKK已知渐开线齿廓上某一点的压力角 ,试求:1)该点的渐开线函数值;2)当某一点的展角 时,该点处渐开线的压力角。14 302 15 tantan14.514.50.0055448rad180解:1)2)2 150.0392699rad 问题2可采用一维寻优优化设计精确求解 求 ,等价于解方程tantan0.03926990设()t
25、an0.0392699f目标函数 min()tan0.0392699f xxx搜索区间的确定:因为 ,所以(0)0fmin0 x 因为 ,所以 04fmax0.78544x0,4x*0f采用0.618法,可得27.215095五、二级圆柱齿轮减速器传动比最优分配五、二级圆柱齿轮减速器传动比最优分配1.减速器简介传统设计方法提出的分配方案为(1.21.3)12ii2.2.以两级大齿轮浸油相近优化分配传动比以两级大齿轮浸油相近优化分配传动比以两级大齿轮相近为目标函数,令 ,凭经验或依据工作要求取值,推荐 =0.750.85,此时有 24ddkkk12ixi由于 、,故有121idd243idd21
26、43ddxdd 以齿面的接触强度为计算依据,取0.9713ddH12H34有10.97234dxixdx ixi令10.973xikxx ixi 优化目标函数为 1min()0.97223xif xkkkxx ixi对应不同的 值与总传动比 ,能得到不同的传动比分配值 。kix例 二级直齿圆柱齿轮减速器,当总传动比分别为8、10、12、24时,取 0.8,求其传动比的分配值 24dd()12x xi i3.3.以四个齿轮重量和最轻优化分配传动比以四个齿轮重量和最轻优化分配传动比以齿轮接触强度条件为设计依据,对钢钢制齿轮有2120011HH211KT i1bdi则12121200211211H1
27、KT ib di12120021 12233H342K i T ib di四个齿轮的体积和为4112120021200(1)(1)4 4 22i1234111323i 122111 122212H121H342VVVVVVi VVi VKT iK i T iiiii若取 ,=0.97,以四个齿轮的重量和最轻为优化目标函数,则 H12H34min()4ii 1f XV或 11min()(1)0.97(1)221211212iif Xiiiii例 二级直齿圆柱齿轮减速器,当总传动比分别为8、10、12、24时,求其传动比的分配值()12x xi i六、等负载螺纹螺母的优化设计六、等负载螺纹螺母的优
28、化设计1.螺栓、螺母、螺纹牙弹性变形ddxb0bbxn0nnFxA EFxA E螺纹牙弹性变形a)螺纹牙弯曲和剪切引起的弹性变形 b)螺纹牙根倾斜引起的弹性变形c)螺纹牙根剪切引起的弹性变形 d)螺纹牙径向收缩引起的弹性变形根据内外螺纹件的静力平衡和变形协调条件,有()()()bnx xbnbnx xx 02.等载荷时螺母螺纹的优化设计如果螺栓螺纹牙等载荷受力,则受拉螺栓的 位置处的轴向拉力与变形的关系为xddbbFFxLFFxL为使螺纹牙受力均布,当螺栓螺纹采用标准尺寸时,标准螺母螺纹在位置单侧面(上面)的轴向切削量 ,由上式得xxm112tan()tantantan2bnnxx xx 0b
29、bnnnxbnbnxbnbxxnnnnF xmLA EA EkFkFkFkFmmELELELEL或11tantan022bnnxbxbbnnnnFkkxFmLA EA EEE L当已知标准螺纹螺栓的轴向拉力 ,取 ,对应螺母螺纹的轴向最佳切削量 ,优化目标函数为bF(1,2,3Lxiinn,)*xm11min()tantan22bnnxxbxbbnnnnFkkxf mFmLA EA EEE L其中 nx1nx2nx3nx4nx5nxkkkkkk3(1)122lncot4tan42223xx1nxxxxbmamckambmam6(1)cotln5x2nxxamkbm12(1)tan()22x3n
30、x2xbmckcam22(1)14lnln122()22x4nx2xxxPamPPkamPamamtan222OPP5nx22OPDddkDdP3.3.计算实例计算实例例例 对边尺寸 17mm的普通六角钢螺母与M10钢螺栓的螺纹旋合长度 8mm。保证载荷10000N,取 17.85mm,9.026mm,1.5mm,MPa,在等载荷条件下,试计算螺母螺纹的轴向切削量 。B L bF OD P2ddP 3042.1 10bnEE0.3xm七、曲柄滑块机构最大行程速比系数的优化设计七、曲柄滑块机构最大行程速比系数的优化设计1.引言偏置的曲柄滑块机构,当曲柄为主动件时,机构具有急回特性。其行程速比系数
31、愈大,滑块回程用的时间愈短,机构单向工作效率愈高,但同时机构的最小传动角会减小,机构的运动性能趋劣。若机构的行程速比系数选择过大,会造成机构运动不畅,甚至会卡死不能运动。设计这类曲柄滑块机构通常必须先知道机构的行程速比系数和行程,然后确定设计参数曲柄长度、连杆长度和偏心距。这种试凑法无法得到最好的设计结果。即使采用优化设计,如果给定的行程速比系数过大,会产生机构最小传动角小于机构许用传动角,从而使设计无解。2.偏置曲柄滑块机构的几何关系()()2()()cos22232323232Hllllllll2(1 cos)2(1 cos)2223Hllsinsin()32321232llllHAC C
32、e ll因为所以因为所以sin2232lleH机构最小传动角 minarccos23ell机构的行程速比系数 180180K3.3.已知已知 、时的最大机构最小传动角的优时的最大机构最小传动角的优化设计化设计KH当已知机构行程速比系数 和行程 时,使机构拥有最大的机构最小传动角 的设计KH*min目标函数 max()arccos223elf ll因此有 2(1 cos)sin(4)1max()arccos2(1 cos)2(1 cos)22222222HlHlf lHHl以曲柄为设计变量,取值范围为 minmax()222lll,其中 min(1 cos)2sin2Hlmax22Hl4.4.依
33、据许用传动角确定最大行程速比系数依据许用传动角确定最大行程速比系数令 2(1 cos)sin(4)1cos 2(1 cos)2(1 cos)2222222HlHlHHl由 min(1 cos)2sin2Hl令 min(1 cos)2sin2xHH由 max22Hl令 max22xHH由于 ,故设计变量(0,90)(0,1)x整理后 (1 cos)sin(1)cos 2(1 cos)sin222xxx令 ,则cos 12sin22sincos22sincos22cos202422232232222xxxxxxxxxx令 1224221xxxx 2232xxx2222234xxxx整理后得 sin
34、sincossincos022123234xxxxxx将 2tan1tan22sincostan21tan1tan22222y代入,有(44)8(1)4(104)424022423422222xyx xyxxxy因为 ,所以有0tan0022y,(44)8(1)4(104)4240222242222xyx xyxxx(1)(1)(1)(1)(1)(1)2arctan2222222222x xxx xxyxx针对机构许用传动角,最大行程速比系数可由一维搜索优化确定 即 max(1)(1)(1)max()2arctan22222x xxf xx机构最大行程速比系数为 maxmaxmax180180
35、K5.5.设计实例设计实例从本设计实例可以得出如下结论:机构最大行程速比系数只与许用传动角有关;机构最大行程速比系数随着许用传动角的增加而减小。八、曲柄机构最大行程速比系数及其参数的优八、曲柄机构最大行程速比系数及其参数的优化设计化设计曲柄机构连杆曲线上存在尖点,能使机构产生瞬时停歇,尖点的这一特性在机械工程中的传送、冲压以及进给工艺过程中获得普遍应用。对于单向工作的连杆曲线上有两个尖点的曲柄机构,其两尖点间的行程速比系数愈大,机构的工作效率愈高,但同时会使机构的最小传动角减小,从而导致机构的运动性能趋劣。设计这类机构一般是已知连杆的两个尖点位置和对应的曲柄转角,然后采用图解法确定其它几何尺寸
36、。这种设计方法设计繁琐、精度差、效率低,难以得到最好的设计结果,且当给定两尖点的曲柄对应转角不妥时,则无法满足机构的运动条件,从而使机构运动不畅。通过建立机构的几何关系和运动条件,导出机构拥有最佳传动角时设计参数之间的函数关系,采用优化设计,按机构许用传动角确定出曲柄对应的最小转角或机构两尖点间最大的行程速比系数,可迅速、精确地获得设计问题的最佳设计结果。1.1.曲柄机构的几何关系曲柄机构的几何关系主动件曲柄匀速转动,当已知连杆曲线上两尖点的位置 、和对应曲柄转角 ,则曲柄机构两个尖点间的行程速比系数 CC360211122CC tttKC C ttt2.曲柄机构拥有最大传动角的条件曲柄机构可
37、能的最小传动角为()()arccosarccos2222222234123412123 43 4lllllllll ll l如果 ,则 ;如果 ,则 。曲柄机构的最小传动角为 。9023290232minmin(,)13 依据图解法原理,实现两尖点间曲柄的对应转角条件曲柄支点的可行设计区域为 ,当满足曲柄存在条件时,应有AC1)曲柄支点B趋近A点时,即 ,则 。故有 及 ,且单调连续;01l02l34ll01 min0 2)曲柄支点B趋近 点时,即 ,则 及 、。故有 ,且单调连续。C1lAC22lH23lH4lAC23min0 故曲柄机构的最小传动角呈最大时,必然有或 ,即1312()()a
38、rccosarccos22222222341234123 43 4lllllllll ll l则有 22221234llll3.曲柄机构优化目标函数如果已知连杆曲线上两尖点位置 、及对应曲柄的转角 ,从最有利于机构运动出发,追求机构最小传动角呈最大,由于 ,则优化目标函数CC21minmax(,)max131 即()maxarccos222234123 4lllll l或()min222234123 4lllll l亦即 min()1 23 4l lf xl l由于 2tansin22424lll1H则 22cos1tansinsectansin22222223 4441 2l llll lH
39、H故 等价于min()1 23 4l lf xl l22max1tansinsectansin22222244llHH或 22max sectansintansin22222223244llHH对 求导得4ld()22tansin2tansind222223444f lllHH令 ,有 d()0d()44f ll*sec424Hl因为 d()22tansin0d2222424f llH 因此所求值为机构唯一的最大值点。由 可得*4l*2 3cos2cos3cos221HHll*sec4234Hll则机构最大的最小传动角为*min4cos2arccos3cos4.按许用传动角反推曲柄机构的最小对
40、应转角令 4cos2 arccos3cos或 4cos2cos 3cos建立优化数学模型为 4cos2min()cos 3cosf5.设计实例例例 已知连杆曲线上两尖点位置距离 =50mm,若曲柄机构许用传动角 =50,希望单向工作时机构两尖点间的行程速比系数最大,试确定最佳曲柄机构诸设计参数。H 6.结论1)曲柄机构两尖点间的最大行程速比系数与连杆曲线上两尖点位置无关;2)曲柄机构两尖点间的最大行程速比系数随着曲柄机构许用传动角的增大而减小;3)当曲柄机构的最小传动角呈最大时,该机构四杆的尺寸关系为*345lll九、摇块机构的优化设计九、摇块机构的优化设计1.一般设计问题2.传统设计方法图解
41、法设计简单易懂,但设计繁琐,设计周期长,设计精度差,可行结果众多,无法找到最优的设计结果。3.摇块机构已知 、时,、的精确计算0HHal02cos22200Halalarccos222200alHal又2cos22200HHalalarccos222200alHHalarccosarccos2222222200alHHalHalal因此可采用一维搜索优化设计快速确定 l设 xl则 min()arccosarccos2222222200alHHalHf xalal所以 *arccos222200alHal4.按机构初始位置运动性能最佳设计摇块机构对不同的机架长度,有相对应的设计结果摇杆长度和摇杆的初始位置摆角,因此对一般的设计问题有无穷多的可行设计方案,也就无法确定最优设计结果。针对自卸货车类似的设计问题,当略去惯性力时,通常会追求机构在初始位置的传动角呈最大作为优化目标。即 =90(=90),则 0ACB2220alH设 ,则 xl22min()arccosarccos2220222200 xH HHxf xxHx xH
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。