1、2.22.2函数的单调性与最大函数的单调性与最大(小小)值值要点梳理要点梳理1.1.函数的单调性函数的单调性(1 1)单调函数的定义)单调函数的定义增函数增函数减函数减函数定定义义一般地,设函数一般地,设函数f f(x x)的定义域为)的定义域为I.I.如果对于定如果对于定义域义域I I内某个区间内某个区间D D上的任意两个自变量上的任意两个自变量x1x1,x2x2基础知识自主学习基础知识自主学习定定义义当当x x1 1 x x2 2时时,都有都有 ,那,那么就说函数么就说函数f f(x x)在区在区间间D D上是增函数上是增函数 当当x x1 1 x x2 2时,都有时,都有 ,那么就,那么
2、就说函数说函数f f(x x)在区间)在区间D D上是减函数上是减函数 图图象象描描述述自左向右看图象是自左向右看图象是_ 自左向右看图象是自左向右看图象是_ f f(x x1 1))f f(x x2 2)上升的上升的下降的下降的(2)(2)单调区间的定义单调区间的定义 若函数若函数f f(x x)在区间在区间D D上是上是_或或_,则称,则称 函数函数f f(x x)在这一区间上具有(严格的)单调性,)在这一区间上具有(严格的)单调性,_叫做叫做f f(x x)的单调区间)的单调区间.增函数增函数减函数减函数区间区间D D2.2.函数的最值函数的最值 前提前提 设函数设函数y y=f f(x
3、 x)的定义域为的定义域为I I,如果存在实数,如果存在实数M M满足满足 条件条件 对于任意对于任意x xI I,都有都有_;存在存在x x0 0I I,使得使得_._.对于任意对于任意x xI I,都,都有有_;存在存在x x0 0I I,使得使得_._.结论结论 M M为最大值为最大值 M M为最小值为最小值 f f(x x)M Mf f(x x0 0)=M Mf f(x x)M Mf f(x x0 0)=M M基础自测基础自测1.1.下列函数中,在区间(下列函数中,在区间(0 0,2 2)上为增函数的是)上为增函数的是 ()()A.A.y y=-=-x x+1 B.+1 B.y y=C
4、.C.y y=x x2 2-4-4x x+5 D.+5 D.解析解析 y y=-=-x x+1,+1,y y=x x2 2-4-4x x+5,+5,分别为一次函分别为一次函 数、数、二次函数、反比例函数,从它们的图象上可二次函数、反比例函数,从它们的图象上可 以看出在(以看出在(0 0,2 2)上都是减函数)上都是减函数.xy2Bxy2x2.2.已知函数已知函数y y=f f(x x)是定义在是定义在R R上的增函数上的增函数,则则f f(x x)=0)=0的的 根根 ()A.A.有且只有一个有且只有一个 B.B.有有2 2个个 C.C.至多有一个至多有一个 D.D.以上均不对以上均不对 解析
5、解析 f f(x x)在)在R R上是增函数,上是增函数,对任意对任意x x1 1,x x2 2R R,若若x x1 1 x x2 2,则则f f(x x1 1)f f(x x2 2),),反之亦成立反之亦成立.故若存在故若存在f f(x x0 0)=0,)=0,则则x x0 0只有一个只有一个.若对任意若对任意x xR R都无都无f f(x x)=0,)=0,则则f f(x x)=0)=0无根无根.C3.3.已知已知f f(x x)为为R R上的减函数,则满足上的减函数,则满足 的实数的实数x x的取值范围是的取值范围是 ()A.(-1,1)A.(-1,1)B.(0,1)B.(0,1)C.(
6、-1,0)(0,1)C.(-1,0)(0,1)D.D.(-,-1)(1,+)-,-1)(1,+)解析解析 由已知条件:由已知条件:不等式等价于不等式等价于 解得解得-1-1x x1,1,且且x x0.0.)1(|)1(|fxf,1|1|x,01|xxC4.4.函数函数y y=(2=(2k k+1)+1)x x+b b在(在(-,+)上是减函数,则)上是减函数,则 ()()A.B.A.B.C.D.C.D.解析解析 使使y y=(2=(2k k+1)+1)x x+b b在(在(-,+)上是减函数)上是减函数,则则2 2k k+10+10)0;(x x1 1-x x2 2)f f(x x1 1)-)
7、-f f(x x2 2)0)0;其中能推出函数其中能推出函数y y=f f(x x)为增函数的命题为为增函数的命题为_._.解析解析 依据增函数的定义可知,对于依据增函数的定义可知,对于,当自变,当自变 量增大时,相对应的函数值也增大,所以量增大时,相对应的函数值也增大,所以可推可推 出函数出函数y y=f f(x x)为增函数)为增函数.;0)()(2121xxxfxf.0)()(2121xxxfxf题型一题型一 函数单调性的判断函数单调性的判断【例例1 1】已知函数已知函数 证明:函数证明:函数f f(x x)在在(-1,+)(-1,+)上为增函数上为增函数.(1 1)用函数单调性的定义)
8、用函数单调性的定义.(2 2)用导数法)用导数法.证明证明 方法一方法一 任取任取x x1 1,x x2 2(-1,+),(-1,+),不妨设不妨设x x1 1 0,0,).1(12)(axxaxfx,01112xxxaa且思维启迪思维启迪题型分类题型分类 深度剖析深度剖析又又x x1 1+10,+10,x x2 2+10,+10,于是于是f f(x x2 2)-)-f f(x x1 1)=)=故函数故函数f f(x x)在(在(-1,+-1,+)上为增函数)上为增函数.,0)1(12112xxxxxaaaa,0)1)(1()(3)1)(1()1)(2()1)(2(12121212212112
9、1122xxxxxxxxxxxxxx,01212112212xxxxaaxx方法二方法二 求导数得求导数得 a a1,1,当当x x-1-1时,时,a ax xln ln a a0,0,f f(x x)0)0在(在(-1-1,+)上恒成立,)上恒成立,则则f f(x x)在(在(-1,+-1,+)上为增函数)上为增函数.对于给出具体解析式的函数,判断或证明对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步其在某区间上的单调性问题,可以结合定义(基本步骤为取点、作差或作商、变形、判断)求解骤为取点、作差或作商、变形、判断)求解.可导函可导函数则可以利用导数解之数则
10、可以利用导数解之.,)1(3ln)(2xaaxfx),1(131)(axaxfx,0)1(32x探究提高探究提高知能迁移知能迁移1 1 试讨论函数试讨论函数 x x(-1,1)(-1,1)的单的单 调性(其中调性(其中a a00).解解 方法一方法一 根据单调性的定义求解根据单调性的定义求解.设设-1-1x x1 1 x x2 21,1,-1 -1x x1 1 x x2 21,|1,|x x1 1|1,|1,|x x2 2|1,|0,0,即即-1-1x x1 1x x2 21,0.+10.,1)(2xaxxf.)1)(1()1)(11)()(2221211222221121xxxxxxaxax
11、xaxxfxf则,1|,01,01212221xxxx因此,当因此,当a a00时,时,f f(x x1 1)-)-f f(x x2 2)0,)0,即即f f(x x1 1)f f(x x2 2),),此时函数为减函数;此时函数为减函数;当当a a00时,时,f f(x x1 1)-)-f f(x x2 2)0,)0,即即f f(x x1 1)00时,时,-1-1x x1,1,即即f f(x x)0,)0,此时此时f f(x x)在(在(-1-1,1 1)上为减函数)上为减函数.同理,当同理,当a a000时,时,f f(x x)在(在(-1-1,1 1)上为减函数;)上为减函数;a a00,
12、-30,得得x x-13,3,结合二次函数的结合二次函数的 对称轴直线对称轴直线x x=1=1知知,在对称轴左边函数在对称轴左边函数y y=x x2 2-2 2x x-3-3是是 减函数,所以在区间(减函数,所以在区间(-,-1-1)上是减函数)上是减函数,由由 此可得此可得D D项符合项符合.故选故选D.D.思维启迪思维启迪D (1 1)复合函数是指由若干个函数复合而)复合函数是指由若干个函数复合而成的函数,它的单调性与构成它的函数成的函数,它的单调性与构成它的函数u u=g g(x x),),y y=f f(u u)的单调性密切相关,其单调性的规律为的单调性密切相关,其单调性的规律为“同增
13、异减同增异减”,即即f f(u u)与与g g(x x)有相同的单调性,则有相同的单调性,则f f g g(x x)必为增函必为增函数,若具有不同的单调性,则数,若具有不同的单调性,则f f g g(x x)必为减函数必为减函数.(2 2)讨论复合函数单调性的步骤是:)讨论复合函数单调性的步骤是:求出复合函数的定义域;求出复合函数的定义域;把复合函数分解成若干个常见的基本函数并判断其把复合函数分解成若干个常见的基本函数并判断其单调性;单调性;把中间变量的变化范围转化成自变量的变化范围;把中间变量的变化范围转化成自变量的变化范围;根据上述复合函数的单调性规律判断其单调性根据上述复合函数的单调性规
14、律判断其单调性.探究提高探究提高知能迁移知能迁移2 2 函数函数y y=的递减区间为的递减区间为 ()A.(1,+)B.A.(1,+)B.C.D.C.D.解析解析 作出作出t t=2=2x x2 2-3-3x x+1+1的示意的示意 图如图所示,图如图所示,0 1,0 0)0恒成立,试求实恒成立,试求实 数数a a的取值范围的取值范围.第第(1)(1)问可先证明函数问可先证明函数f f(x x)在在1,+)1,+)上的单调性上的单调性,然后利用函数的单调性求解,对于第然后利用函数的单调性求解,对于第 (2)(2)问可采用转化为求函数问可采用转化为求函数f f(x x)在在1,+)1,+)上的最
15、小上的最小 值大于值大于0 0的问题来解决的问题来解决.思维启迪思维启迪,)(xaxxxf 2221解解 设设11x x1 1 x x2 2,则则f f(x x2 2)-)-f f(x x1 1)=)=11x x1 1 0,20,2x x1 1x x2 22,2,f f(x x2 2)-)-f f(x x1 1)0,)0,f f(x x1 1)0)0恒成立恒成立 x x2 2+2+2x x+a a00恒成立恒成立.,)(,)(221211 xxxfa时时当当,0211212102121 xxxx.27),)(2112211xxxx 设设y y=x x2 2+2+2x x+a a,x x1,+)
16、,1,+),则函数则函数y y=x x2 2+2+2x x+a a=(=(x x+1)+1)2 2+a a-1-1在区间在区间1,+)1,+)上是上是增函数增函数.当当x x=1=1时,时,y yminmin=3+=3+a a,于是当且仅当于是当且仅当y yminmin=3+=3+a a00时时,函数函数f f(x x)0)0恒成立,恒成立,故故a a-3.-3.要注意函数思想在求函数值域中的运要注意函数思想在求函数值域中的运用用,(1),(1)中用函数单调性求函数的最小值中用函数单调性求函数的最小值;(2);(2)中用函中用函数的最值解决恒成立问题数的最值解决恒成立问题.在在(2)(2)中,
17、还可以使用分中,还可以使用分离参数法,要使离参数法,要使x x2 2+2+2x x+a a00在在1,+)1,+)上恒成立上恒成立,只要只要a a-x x2 2-2-2x x=-(=-(x x+1)+1)2 2+1+1恒成立,由二次函数恒成立,由二次函数的性质得的性质得-(-(x x+1)+1)2 2+1-3,+1-3,所以只要所以只要a a-3-3即可即可.探究提高探究提高知能迁移知能迁移3 3 已知函数已知函数 (a a0,0,x x0),0),(1)(1)求证求证:f f(x x)在在(0,+)(0,+)上是单调递增函数上是单调递增函数;(2)(2)若若f f(x x)在在 上的值域是上
18、的值域是 求求a a的值的值.(1)(1)证明证明 设设x x2 2 x x1 10,0,则则x x2 2-x x1 10,0,x x1 1x x2 20,0,f f(x x2 2)f f(x x1 1),),f f(x x)在在(0,+)(0,+)上是单调递增的上是单调递增的.xaxf11 )(,221,221,)()()()(01111112112211212 xxxxxxxaxaxfxf.)(,)(,)(,)()(522221212212212212 affxfxf易易得得上上单单调调递递增增在在又又上上的的值值域域是是在在题型四题型四 函数单调性与不等式函数单调性与不等式【例例4 4】
19、(12(12分分)函数函数f f(x x)对任意的对任意的a a、b bR R,都有都有f f(a a+b b)=f f(a a)+)+f f(b b)-1,)-1,并且当并且当x x00时,时,f f(x x)1.)1.(1 1)求证:)求证:f f(x x)是是R R上的增函数;上的增函数;(2 2)若)若f f(4)=5,(4)=5,解不等式解不等式f f(3(3m m2 2-m m-2)3.-2)3.问题问题(1)(1)是抽象函数单调性的证明是抽象函数单调性的证明,所所 以要用单调性的定义以要用单调性的定义.问题问题(2)(2)将函数不等式中抽象的函数符号将函数不等式中抽象的函数符号“
20、f f”运运 用单调性用单调性“去掉去掉”,为此需将右边常数为此需将右边常数3 3看成某个看成某个 变量的函数值变量的函数值.思维启迪思维启迪解解 (1 1)设)设x x1 1,x x2 2R R,且,且x x1 1 0,0,f f(x x2 2-x x1 1)1.2)1.2分分f f(x x2 2)-)-f f(x x1 1)=)=f f(x x2 2-x x1 1)+)+x x1 1)-)-f f(x x1 1)=f f(x x2 2-x x1 1)+)+f f(x x1 1)-1-)-1-f f(x x1 1)=f f(x x2 2-x x1 1)-10.5)-10.5分分f f(x x
21、2 2)f f(x x1 1).).即即f f(x x)是是R R上的增函数上的增函数.6.6分分(2 2)f f(4 4)=f f(2+22+2)=f f(2 2)+f f(2 2)-1=5-1=5,f f(2 2)=3=3,8 8分分原不等式可化为原不等式可化为f f(3(3m m2 2-m m-2)-2)f f(2),(2),f f(x x)是是R R上的增函数,上的增函数,33m m2 2-m m-22,10-22,10分分解得解得-1-1m m ,故解集为故解集为 1212分分 f f(x x)在定义域上(或某一单调区间上)在定义域上(或某一单调区间上)具有单调性,则具有单调性,则f
22、 f(x x1 1)f f(x x2 2)f f(x x1 1)-)-f f(x x2 2)0,)0,若函数是若函数是增函数增函数,则则f f(x x1 1)f f(x x2 2)x x1 1 11时,时,f f(x x)0.)0.(1 1)求)求f f(1)(1)的值;的值;(2 2)判断)判断f f(x x)的单调性;)的单调性;(3 3)若)若f f(3)=-1,(3)=-1,解不等式解不等式f f(|(|x x|)-2.|)0,0,代入得代入得f f(1)=(1)=f f(x x1 1)-)-f f(x x1 1)=0,)=0,故故f f(1)=0.(1)=0.)(21xxf(2 2)
23、任取)任取x x1 1,x x2 2(0,+)(0,+),且,且x x1 1 x x2 2,则则 由于当由于当x x11时,时,f f(x x)0,)0,所以所以 即即f f(x x1 1)-)-f f(x x2 2)0,)0,因此因此f f(x x1 1)f f(x x2 2),),所以函数所以函数f f(x x)在区间在区间(0,+)(0,+)上是单调递减函数上是单调递减函数.(3 3)由)由 =f f(x x1 1)-)-f f(x x2 2)得得 =f f(9)-(9)-f f(3),(3),而而f f(3)=-1,(3)=-1,所以所以f f(9)=-2.(9)=-2.由于函数由于函
24、数f f(x x)在区间(在区间(0,+0,+)上是单调递减函数,)上是单调递减函数,由由f f(|(|x x|)|)9,|9,x x99或或x x-9.99或或x x-9.-9.,121xx,0)(21xxf)(21xxf)39(f1.1.根据函数的单调性的定义,证明(判定)函数根据函数的单调性的定义,证明(判定)函数f f(x x)在其区间上的单调性,其步骤是在其区间上的单调性,其步骤是 (1 1)设)设x x1 1、x x2 2是该区间上的任意两个值,且是该区间上的任意两个值,且x x1 1x x2 2;(2 2)作差)作差f f(x x1 1)-f f(x x2 2),然后变形;),然
25、后变形;(3 3)判定)判定f f(x x1 1)-f f(x x2 2)的符号;)的符号;(4 4)根据定义作出结论)根据定义作出结论.方法与技巧方法与技巧思想方法思想方法 感悟提高感悟提高2.2.求函数的单调区间求函数的单调区间 首先应注意函数的定义域,函数的增减区间都是其首先应注意函数的定义域,函数的增减区间都是其 定定义域的子集义域的子集;其次掌握一次函数、二次函数等基本其次掌握一次函数、二次函数等基本 初等函数的单调区间初等函数的单调区间.常用方法有:根据定义,利用常用方法有:根据定义,利用 图象和单调函数的性质,还可以利用导数的性质图象和单调函数的性质,还可以利用导数的性质.3.3
26、.复合函数的单调性复合函数的单调性 对于复合函数对于复合函数y y=f f g g(x x),),若若t t=g g(x x)在区间在区间(a a,b b)上是上是 单调函数单调函数,且且y y=f f(t t)在区间在区间(g g(a a),),g g(b b)或者或者(g g(b b),),g g(a a)上是单调函数上是单调函数,若若t t=g g(x x)与与y y=f f(t t)的单调性相同的单调性相同 (同时为增或减同时为增或减),),则则y y=f f g g(x x)为增函为增函数数;若若t t=g g(x x)与与 y y=f f(t t)的单调性相反的单调性相反,则则y
27、y=f f g g(x x)为减函数为减函数.简称为简称为:同增异减同增异减.1.1.函数的单调区间是指函数在定义域内的某个区间上函数的单调区间是指函数在定义域内的某个区间上 单调递增或单调递减单调递增或单调递减.单调区间要分开写单调区间要分开写,即使在两即使在两 个区间上的单调性相同个区间上的单调性相同,也不能用并集表示也不能用并集表示.2.2.两函数两函数f f(x x)、g g(x x)在在x x(a a,b b)上上都是增都是增(减减)函数函数,则则 f f(x x)+)+g g(x x)也为增也为增(减减)函数函数,但但f f(x x)g g(x x),),等的等的 单调性与其正负有
28、关,切不可盲目类比单调性与其正负有关,切不可盲目类比.失误与防范失误与防范)(1xf一、选择题一、选择题1.1.若函数若函数y y=axax与与 在在(0,+)(0,+)上都是减函数,上都是减函数,则则y y=axax2 2+bxbx在(在(0 0,+)上是)上是 ()A.A.增函数增函数 B.B.减函数减函数 C.C.先增后减先增后减 D.D.先减后增先减后增 解析解析 y y=axax与与 在在(0,+)(0,+)上都是减函数上都是减函数,a a0,0,b b000且且a a11)是)是R R上上 的减函数,则的减函数,则a a的取值范围是的取值范围是 ()()A.A.(0 0,1 1)B
29、.B.C.D.C.D.解析解析 据单调性定义,据单调性定义,f f(x x)为减函数应满足:)为减函数应满足:0,0,3)(xaxaxxfx)1,3131,0(32,0(.,1313100 aaaa即即B3.3.下列四个函数中下列四个函数中,在在(0,1)(0,1)上为增函数的是上为增函数的是 ()()A.A.y y=sin=sin x x B.B.y y=-log=-log2 2x x C.C.D.D.解析解析 y y=sin=sin x x在在 上是增函数,上是增函数,y y=sin=sin x x在(在(0 0,1 1)上是增函数)上是增函数.xy)21(21 xy,22 A4.4.(2
30、009(2009天津理,天津理,8)8)已知函数已知函数 若若f f(2-(2-a a2 2)f f(a a),则实数,则实数a a 的取值范围是的取值范围是 ()A.A.(-,-1-,-1)(2,+)B.(-1,2)(2,+)B.(-1,2)C.(-2,1)D.(-,-2)(1,+)C.(-2,1)D.(-,-2)(1,+)解析解析 由由f f(x x)的图象的图象 可知可知f f(x x)在在(-,+)(-,+)上是单调递增函数上是单调递增函数,由由f f(2-(2-a a2 2)f f(a a)得得2-2-a a2 2 a a,即即a a2 2+a a-20,-20,解得解得-2-2a
31、a1.1,e1,函数函数f f(x x)的单调减区间为的单调减区间为 23,(),2323,1()4,23425)23(2x),4,23).4,23D二、填空题二、填空题7.7.若函数若函数f f(x x)=()=(m m-1)-1)x x2 2+mxmx+3(+3(x xR R)是偶函数,则是偶函数,则 f f(x x)的单调减区间是的单调减区间是_._.解析解析 f f(x x)是偶函数,)是偶函数,f f(-x x)=f f(x x),),(m m-1)-1)x x2 2-mxmx+3=(+3=(m m-1)-1)x x2 2+mxmx+3+3,m m=0.=0.这时这时f f(x x)
32、=-)=-x x2 2+3+3,单调减区间为单调减区间为00,+).+).0,+)0,+)8.8.若函数若函数 在区间在区间(m m,2 2m m+1)+1)上是单调递上是单调递 增函数,则增函数,则m m_._.解析解析 令令f f(x x)0,)0,得得-1-1x x1,+1m m,m m-1.-1.综上,综上,-1-1m m0.0.142 xxxf)(,)1()1(4)(222xxxf.,011121 mmm(-1,0(-1,09.9.已知定义域为已知定义域为D D 的函数的函数f f(x x),对任意,对任意x xD D,存在正存在正 数数K K,都有,都有|f f(x x)|)|K
33、K成立,则称函数成立,则称函数f f(x x)是是D D上的上的 “有界函数有界函数”.已知下列函数已知下列函数:f f(x x)=2sin)=2sin x x;f f(x x)=)=f f(x x)=1-2)=1-2x x;其中其中 是是“有界函数有界函数”的是的是_._.(写出所有满足要求(写出所有满足要求 的函数的序号)的函数的序号),1)(2xxxf;12x解析解析 中中|f f(x x)|=|2sin|=|2sin x x|2,|2,中中|f f(x x)|1;|1;当当x x=0=0时,时,f f(x x)=0)=0,总之,总之,|f f(x x)|)|f f(x x)1,|)1,
34、|f f(x x)|+,|+,故填故填.答案答案 ),0(21|1|11|)(|2xxxxxxf;21三、解答题三、解答题10.10.判断判断f f(x x)=)=在在(-,0)(0,+)(-,0)(0,+)上的单调性上的单调性.解解 -11,-11,f f(-1-1)=-1=-1f f(1)=1,(1)=1,f f(x x)在()在(-,0 0)(0,+)(0,+)上不是减函数上不是减函数.-2-1,-2(-2)=f f(-1)=-1,(-1)=-1,f f(x x)在(在(-,0 0)(0 0,+)上不是增函数)上不是增函数.f f(x x)在()在(-,0 0)(0,+)(0,+)上不具
35、有单调性上不具有单调性.x12111.11.已知已知 (1 1)若)若a a=-2,=-2,试证试证f f(x x)在(在(-,-2-,-2)内单调递增;)内单调递增;(2 2)若)若a a00且且f f(x x)在(在(1,+1,+)内单调递减,求)内单调递减,求a a的取的取 值范围值范围.(1 1)证明证明 任设任设x x1 1 x x2 2-2,0,+2)0,x x1 1-x x2 20,0,f f(x x1 1)f f(x x2 2),),f f(x x)在在(-,-2)(-,-2)内单调递增内单调递增.).()(axaxxxf.)2)(2()(22221212211xxxxxxxx
36、(2 2)解解 任设任设11x x1 1 0,0,x x2 2-x x1 10,0,要使要使f f(x x1 1)-)-f f(x x2 2)0,)0,只需只需(x x1 1-a a)()(x x2 2-a a)0)0恒成立,恒成立,a a1.1.综上所述知综上所述知000+30及及 得得x x0,0,由由f f(6)=1(6)=1及及 得得f f x x(x x+3)2+3)2f f(6),(6),即即f f x x(x x+3)-+3)-f f(6)(6)f f(6),(6),亦即亦即 因为因为f f(x x)在在(0,+)(0,+)上是增函数上是增函数,所以所以 解得解得 综上所述,不等
37、式的解集是综上所述,不等式的解集是,01x).6(6)3(fxxf.2)1()3(xfxf,66)3(xx.2173321733x.217330|xx 85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。约翰B塔布 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。戴尔卡内基 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开
38、。贾柯瑞斯 88.每个意念都是一场祈祷。詹姆士雷德非 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。柏格森 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。托尔斯泰 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。兰斯顿休斯 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。玛科斯奥雷利阿斯 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。约翰纳
39、森爱德瓦兹 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。约翰拉斯金 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。威廉班 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。萧伯纳 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。JE丁格 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。英国哲学家培根 99.真正的发现之旅不只是为了寻找全新
40、的景色,也为了拥有全新的眼光。马塞尔普劳斯特 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。罗丹 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。托尔斯泰 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候。叔本华 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。梭罗 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间
41、;因为没有时间的话,我们在世界上什么也不能做。威廉彭 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。戴尔卡内基 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。约翰罗伯克 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。撒母耳厄尔曼 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。卡雷贝C科尔顿 109.每个人皆有连自己都不清楚的潜在能力。无论是谁
42、,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。戴尔卡内基 110.每天安静地坐十五分钟倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。艾瑞克佛洛姆 111.你知道何谓沮丧-就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。坎伯 112.伟大这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。布鲁克斯 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。罗根皮沙尔史密斯 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。阿萨
43、赫尔帕斯爵士 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。威廉海兹利特 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。凯里昂 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。BC福比斯 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。迈可汉默 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。奥古斯汀 120.无论那个时代,能量之所以能够带来奇迹,主要
44、源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。史迈尔斯 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。CHK寇蒂斯 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。乔治桑 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。约翰夏尔 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。道格拉斯米尔多 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度。老子 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。怀特曼 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。G.K.Chesteron 128.医生知道的事如此的少,他们的收费却是如此的高。马克吐温 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。约翰鲁斯金
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。