ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:1.49MB ,
文档编号:3455419      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3455419.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(勾股定理-PPT课件-4-人教版.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

勾股定理-PPT课件-4-人教版.ppt

1、 读一读 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为周髀算经作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图1-1图1-2 在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,经隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股勾股定理定理”或“商高定理商高定理”勾股定

2、理勾股定理勾勾股股弦弦 在西方,希腊数学家欧几里德(在西方,希腊数学家欧几里德(EuclidEuclid,公元前三百年左右)在编著公元前三百年左右)在编著几何原本几何原本时,时,认为这个定理是毕达哥达斯最早发现的,所以认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为他就把这个定理称为“毕达哥拉斯定理毕达哥拉斯定理”,以,以后就流传开了。后就流传开了。毕达哥拉斯(毕达哥拉斯(PythagorasPythagoras)是古希腊数学)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五家,他是公元前五世纪的人,比商高晚出生五百多年。百多年。相传,毕达哥拉斯学派找到了勾股定理的相传,毕达哥拉

3、斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,证明后,欣喜若狂,杀了一百头牛祭神,由此,又有又有“百牛定理百牛定理”之称。之称。教学目标教学目标探索直角三角形三边关系,掌握勾股定理探索直角三角形三边关系,掌握勾股定理的运用思想,发展几何思维。的运用思想,发展几何思维。经历观察与发现直角三角形三边关系的经历观察与发现直角三角形三边关系的 过程,感受勾股定理的应用意识。过程,感受勾股定理的应用意识。培养严谨的数学学习的态度,体会勾股培养严谨的数学学习的态度,体会勾股定理的应用价值。定理的应用价值。毕达哥拉斯毕达哥拉斯(公元前公元前572-前前492年年),古希腊著名的哲学家、古希

4、腊著名的哲学家、数学家、天文学家。数学家、天文学家。相传在相传在2500年前,年前,毕达哥拉斯毕达哥拉斯有有一次在朋友家做客时,发现朋友家用一次在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三砖铺成的地面中反映了直角三角形三边的某种数量关系,我们一起来观察边的某种数量关系,我们一起来观察图中的地面,看看能发现什么。图中的地面,看看能发现什么。A、B、C的面积有什么关系?的面积有什么关系?直角三角形三边有什么关系?直角三角形三边有什么关系?ABCABC图11(1)观察图)观察图11:正方形正方形A中含有中含有 个小个小方格,即方格,即A的面积是的面积是 个单位面积;个单位面积;正方形

5、正方形B中含有中含有 个小个小方格,即方格,即B的面积是的面积是 个单位面积;个单位面积;正方形正方形C中含有中含有 个小个小方格,即方格,即C的面积是的面积是 个单位面积;个单位面积;99991818A的面积的面积+B的面积的面积=C的面积的面积图12ABC(2)观察图)观察图12:正方形正方形A中含有中含有 个小个小方格,即方格,即A的面积是的面积是 个单位面积;个单位面积;正方形正方形B中含有中含有 个小个小方格,即方格,即B的面积是的面积是 个单位面积;个单位面积;正方形正方形C中含有中含有 个小个小方格,即方格,即C的面积是的面积是 个单位面积;个单位面积;444488A的面积的面积

6、+B的面积的面积=C的面积的面积 因此可知等腰直角三角形有这因此可知等腰直角三角形有这样的性质:样的性质:对于任意直角三角形都有这样的性质吗?对于任意直角三角形都有这样的性质吗?两直边的平方和等于斜边的平方两直边的平方和等于斜边的平方看下图看下图ABCA的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积积(单位单位长度长度)图图1图图2A、B、C面积面积关系关系直角三直角三角形三角形三边关系边关系图图1图图2491392534sA+sB=sC 两直角边的平方和两直角边的平方和等于斜边的平方等于斜边的平方ABCabcc2=a2+b2 如果直角三角形两直角边分别为如果直

7、角三角形两直角边分别为a,b,斜,斜边为边为c,那么,那么a2+b2=c2勾股定理勾股定理结论变形结论变形815A49B21.求下列图中字母所代表的正方形的面积:求下列图中字母所代表的正方形的面积:y=0学以致用,做一做S1S2S3S4S5S6S7已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值结论:S1+S2+S3+S4=S5+S6=S7y=0学海无涯EDCBA 如图,所有的四边形都是正方形,所有的三角如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形形都是直角三角形,其中最大的正方形E的边长的边长为为7cm,求正方形,求正方形A,B,C,D的面积的

8、和的面积的和S1S2解:解:SE=49S1=SA+SBS2=SC+SD SA+SB+SC+SD =S1+S2 =SE =4911美丽的勾股树y=02.2.求出下列直角三角形中未知边的长度求出下列直角三角形中未知边的长度68x5x13学以致用,做一做解:(解:(1)在)在RtABC中中,由由勾股定理得:勾股定理得:AB2=AC2+BC2X X2 2=36+64=36+64x x2 2=100=100 x x2 2=6=62 2+8+82 2 x=10 x=10 x0 x0 x x2 2+5+52 2=13=132 2 x x2 2=13=132 2-5-52 2x x2 2=144=144 x=

9、12x=12(2)在在RtABC中中,由由勾股定理勾股定理:AB2+AC2=BC2x0 x0ACBACB生活中的数学问题一个门框的尺寸如图所示,一块长m,宽.m的薄木板能否从门框内通过?为什么?2m1my=0探究12m1my=0分析 连结连结ACAC,在,在RtRtABCABC中,根据勾股定理:中,根据勾股定理:因此,因此,因为因为ACAC大于木板的宽,大于木板的宽,所以木板能从门框内通过。所以木板能从门框内通过。52122222BCABAC.236.25 AC1.在在ABCABC中中,C=90,C=90,a=6,b=8,a=6,b=8,则则c=c=2.2.在在ABCABC中中,a=6,b=8

10、,a=6,b=8,试求第三边试求第三边c c的值的值10y=0练一练3.3.在一个直角三角形中在一个直角三角形中,两边长分别为两边长分别为6 6、8,8,则则第三边的长为第三边的长为_10 y=0练一练或2 7 勾股定理是几何中最重要的定理之勾股定理是几何中最重要的定理之一,它揭示了直角三角形三边之间的一,它揭示了直角三角形三边之间的数量关系数量关系.勾股定理:直角三角形两直角边a、b平方和,等于斜边c平方。a2+b2=c2勾股定理的主要作用是勾股定理的主要作用是 在直角三角形在直角三角形中中,已知任意两边求第三边的长。已知任意两边求第三边的长。作业:P69-70 1、2、3。1、再长的路一步

11、一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。2、从善如登,从恶如崩。3、现在决定未来,知识改变命运。4、当你能梦的时候就不要放弃梦。5、龙吟八洲行壮志,凤舞九天挥鸿图。6、天下大事,必作于细;天下难事,必作于易。7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。9、永远不要逃避问题,因为时间不会给弱者任何回报。10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。11、明天是世上增值最快的一块土地,因它充满了希望。12、得意时应善待他人,因为你失意时会需要他们。13、人生最大的错误是

12、不断担心会犯错。14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。15、不管怎样,仍要坚持,没有梦想,永远到不了远方。16、心态决定命运,自信走向成功。17、第一个青春是上帝给的;第二个的青春是靠自己努力的。18、励志照亮人生,创业改变命运。19、就算生活让你再蛋疼,也要笑着学会忍。20、当你能飞的时候就不要放弃飞。21、所有欺骗中,自欺是最为严重的。22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。23、天行健君子以自强不息;地势坤君子以厚德载物。24、态度决定高度,思路决定出路,细节关乎命运。25、世上最累人的事,莫过於虚伪的过日子

13、。26、事不三思终有悔,人能百忍自无忧。27、智者,一切求自己;愚者,一切求他人。28、有时候,生活不免走向低谷,才能迎接你的下一个高点。29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。30、经验是由痛苦中粹取出来的。31、绳锯木断,水滴石穿。32、肯承认错误则错已改了一半。33、快乐不是因为拥有的多而是计较的少。34、好方法事半功倍,好习惯受益终身。35、生命可以不轰轰烈烈,但应掷地有声。36、每临大事,心必静心,静则神明,豁然冰释。37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。39

14、、人的价值,在遭受诱惑的一瞬间被决定。40、事虽微,不为不成;道虽迩,不行不至。41、好好扮演自己的角色,做自己该做的事。42、自信人生二百年,会当水击三千里。43、要纠正别人之前,先反省自己有没有犯错。44、仁慈是一种聋子能听到、哑巴能了解的语言。45、不可能!只存在于蠢人的字典里。46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。47、小事成就大事,细节成就完美。48、凡真心尝试助人者,没有不帮到自己的。49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。51、对于最有能力的领航人风

15、浪总是格外的汹涌。52、思想如钻子,必须集中在一点钻下去才有力量。53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。54、最伟大的思想和行动往往需要最微不足道的开始。55、不积小流无以成江海,不积跬步无以至千里。56、远大抱负始于高中,辉煌人生起于今日。57、理想的路总是为有信心的人预备着。58、抱最大的希望,为最大的努力,做最坏的打算。59、世上除了生死,都是小事。从今天开始,每天微笑吧。60、一勤天下无难事,一懒天下皆难事。61、在清醒中孤独,总好过于在喧嚣人群中寂寞

16、。62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。63、彩虹风雨后,成功细节中。64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。65、只要有信心,就能在信念中行走。66、每天告诉自己一次,我真的很不错。67、心中有理想 再累也快乐68、发光并非太阳的专利,你也可以发光。69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。70、当你的希望一个个落空,你也要坚定,要沉着!71、生命太过短暂,今天放弃了明天不一定能得到。72、只要路是对的,就不怕路远。73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。74、先知三日,富贵十年。付诸行动,你就会得到力量。75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。76、好习惯成就一生,坏习惯毁人前程。77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|