1、“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:播放播放刘徽刘徽一、概念的引入一、概念的引入 第二节第二节 数列的极限数列的极限R正六边形的面积正六边形的面积1A正十二边形的面积正十二边形的面积2A正正 形的面积形的面积126 nnA,321nAAAAS2 2、截丈问题:、截丈问题:“一尺之棰,日截其半,万世不竭一尺之棰,日截其半,万世不竭”;211 X第一天截下的杖长为第一天截下的杖长为;212122 X为为第二天截下的杖长总和第二天截下的杖长总和;2121212nnXn 天截下
2、的杖长总和为天截下的杖长总和为第第nnX211 1二、数列的定义二、数列的定义定义定义:按自然数按自然数,3,2,1编号依次排列的一列数编号依次排列的一列数 ,21nxxx (1)称为称为无穷数列无穷数列,简称简称数列数列.其中的每个数称为数其中的每个数称为数列的列的项项,nx称为称为通项通项(一般项一般项).数列数列(1)记为记为nx.例如例如;,2,8,4,2n;,21,81,41,21n2n21n注意:注意:1.数列对应着数轴上一个点列数列对应着数轴上一个点列.可看作一可看作一动点在数轴上依次取动点在数轴上依次取.,21nxxx1x2x3x4xnx2.数列是整标函数数列是整标函数).(n
3、fxn;,)1(,1,1,11 n)1(1 n;,)1(,34,21,21nnn )1(1nnn ,333,33,3 .)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn播放播放三、数列的极限三、数列的极限问题问题:当当 无限增大时无限增大时,是否无限接近于某一是否无限接近于某一确定的数值确定的数值?如果是如果是,如何确定如何确定?nxn.1)1(1,1无限接近于无限接近于无限增大时无限增大时当当nxnnn 问题问题:“无限接近无限接近”意味着什么意味着什么?如何用数学语言如何用数学语言刻划它刻划它.1nxnnn11)1(1 通过上面演示实验的观察通过上面演示实验的观察:,1001
4、给定给定,10011 n由由,100时时只要只要 n,10011 nx有有,10001给定给定,1000时时只要只要 n,1000011 nx有有,100001给定给定,10000时时只要只要 n,100011 nx有有,0 给定给定,)1(时时只要只要 Nn.1成立成立有有 nx定义定义 如果对于任意给定的正数如果对于任意给定的正数 (不论它多么不论它多么小小),),总存在正数总存在正数N,使得对于使得对于Nn 时的一切时的一切 nx,不等式不等式 Axn都成立都成立,那末就称常数那末就称常数 A A 是数列是数列 nx的极限的极限,或者称数列或者称数列nx收敛于收敛于 A A,记为记为 ,
5、limAxnn 或或).(nAxn 如果数列没有极限如果数列没有极限,就说数列是发散的就说数列是发散的.注意:注意:;.1的无限接近的无限接近与与刻划了刻划了不等式不等式AxAxnn .2有关有关与任意给定的正数与任意给定的正数 Nx1x2x2 Nx1 Nx3x几何解释几何解释:2 a aa.)(,),(,落在其外落在其外个个至多只有至多只有只有有限个只有有限个内内都落在都落在所有的点所有的点时时当当NaaxNnn 数列极限的定义未给出求极限的方法数列极限的定义未给出求极限的方法.例例1.1)1(lim1 nnnn证明证明注意:注意:例例2.lim),(CxCCxnnn 证明证明为常数为常数设
6、设说明说明:常数列的极限等于同一常数常数列的极限等于同一常数.小结小结:用定义证数列极限存在时用定义证数列极限存在时,关键是任意给关键是任意给定定 寻找寻找N,但不必要求最小的但不必要求最小的N.,0 例例3.1,0lim qqnn其中其中证明证明四、四、数列极限的性质数列极限的性质性质性质1 1 如果数列有极限,则极限是唯一的如果数列有极限,则极限是唯一的.性质性质2 2 收敛的数列必定有界收敛的数列必定有界.注意:注意:有界性是数列收敛的必要条件有界性是数列收敛的必要条件.推论推论 无界数列必定发散无界数列必定发散.性质性质3.3.收敛数列的保号性收敛数列的保号性.性质性质4 4 收敛数列
7、的任一子数列收敛于同一极限收敛数列的任一子数列收敛于同一极限.五、小结五、小结数列数列:研究其变化规律研究其变化规律;数列极限数列极限:极限思想、精确定义、几何意义极限思想、精确定义、几何意义;收敛数列的性质收敛数列的性质:有界性、唯一性、保号性、子列的收敛性有界性、唯一性、保号性、子列的收敛性一、一、利用数列极限的定义证明利用数列极限的定义证明:1 1、231213lim nnn;2 2、19.999.0lim n二、二、设数列设数列nx有界,又有界,又0lim nny,证明:证明:0lim nnnyx.练练 习习 题题1 1、割圆术:、割圆术:“割之弥细,所割之弥细,所失弥少,割之又失弥少
8、,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”刘徽刘徽一、概念的引入一、概念的引入1 1、割圆术:、割圆术:“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于
9、不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割
10、,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:刘徽刘徽一、概念的引入一、概念的引入.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极
11、限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn三、数列的极限三、数列的极限
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。