1、高阶线性微分方程第六节二、线性齐次方程解的结构二、线性齐次方程解的结构 三、线性非齐次方程解的结构三、线性非齐次方程解的结构*四、常数变易法四、常数变易法 一、二阶线性微分方程举例一、二阶线性微分方程举例 一、二阶线性微分方程举例一、二阶线性微分方程举例 当重力与弹性力抵消时,物体处于 平衡状态,例例1.质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,xxo解解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图.设时刻 t 物位移为 x(t).(1)自由振动情况.弹性恢复力物体所受的力有:(虎克定律)xcf成
2、正比,方向相反.建立位移满足的微分方程.据牛顿第二定律得txxctxmdddd22,2mck,2mn令则得有阻尼自由振动方程:0dd2dd222xktxntx阻力txRdd(2)强迫振动情况.若物体在运动过程中还受铅直外力作用,t pHFsin,令mhH则得强迫振动方程:t phxktxntxsindd2dd222n 阶线性微分方程阶线性微分方程的一般形式为方程的共性 为二阶线性微分方程.例例1,)()()(xfyxqyxpy 可归结为同一形式:)()()()(1)1(1)(xfyxayxayxaynnnn时,称为非齐次方程;0)(xf时,称为齐次方程.复习复习:一阶线性方程)()(xQyxP
3、y通解:xexQexxPxxPd)(d)(d)(xxPeCyd)(非齐次方程特解齐次方程通解Yy0)(xf二、线性齐次方程解的结构二、线性齐次方程解的结构)(),(21xyxy若函数是二阶线性齐次方程0)()(yxQyxPy的两个解,也是该方程的解.(叠加原理)()(2211xyCxyCy则),(21为任意常数CC定理定理1.说明说明:不一定是所给二阶方程的通解.例如,)(1xy是某二阶齐次方程的解,)(2)(12xyxy也是齐次方程的解)()2()()(1212211xyCCxyCxyC并不是通解但是)()(2211xyCxyCy则为解决通解的判别问题,下面引入函数的线性相关与 线性无关概念
4、.定义定义:)(,),(),(21xyxyxyn设是定义在区间 I 上的 n 个函数,21nkkk使得Ixxykxykxyknn,0)()()(2211则称这 n个函数在 I 上线性相关线性相关,否则称为线性无关线性无关.例如,,sin,cos,122xx在(,)上都有0sincos122xx故它们在任何区间 I 上都线性相关线性相关;又如,,12xx若在某区间 I 上,02321xkxkk则根据二次多项式至多只有两个零点,321,kkk必需全为 0,可见2,1xx故在任何区间 I 上都 线性无关线性无关.若存在不全为不全为 0 的常数两个函数在区间 I 上线性相关与线性无关的充要条件充要条件
5、:)(),(21xyxy线性相关存在不全为 0 的21,kk使0)()(2211xykxyk1221)()(kkxyxy(无妨设)01k)(),(21xyxy线性无关)()(21xyxy常数思考思考:)(),(21xyxy若中有一个恒为 0,则)(),(21xyxy必线性相关相关21,yy可微函数定理定理 2.)(),(21xyxy若是二阶线性齐次方程的两个线性无关特解,则)()(2211xyCxyCy数)是该方程的通解.例如例如,方程0 yy有特解,cos1xy,sin2xy 且常数,故方程的通解为xCxCysincos21推论推论.nyyy,21若是 n 阶齐次方程 0)()()(1)1(
6、1)(yxayxayxaynnnn的 n 个线性无关解,则方程的通解为)(11为任意常数knnCyCyCyxytan21y为任意常21,(CC三、线性非齐次方程解的结构三、线性非齐次方程解的结构)(*xy设是二阶非齐次方程的一个特解,)(*)(xyxYyY(x)是相应齐次方程的通解,定理定理 3.)()()(xfyxQyxPy 则是非齐次方程的通解.例如例如,方程xyy 有特解xy*xCxCYsincos21对应齐次方程0 yy有通解因此该方程的通解为xxCxCysincos21定理定理 4.),2,1()(nkxyk设分别是方程的特解,是方程),2,1()()()(nkxfyxQyxPyk
7、nkkyy1则)()()(1xfyxQyxPynkk 的特解.(非齐次方程之解的叠加原理)定理3,定理4 均可推广到 n 阶线性非齐次方程.定理定理 5.)(,),(),(21xyxyxyn设是对应齐次方程的 n 个线性)(*)()()(2211xyxyCxyCxyCynn无关特解,给定 n 阶非齐次线性方程)()()()1(1)(xfyxayxaynnn)()(xyxY)(*xy是非齐次方程的特解,则非齐次方程的通解为齐次方程通解非齐次方程特解常数,则该方程的通解是().321,yyy设线性无关函数都是二阶非齐次线性方程)()()(xfyxQyxPy 的解,21,CC是任意;)(32211y
8、yCyCA;)()(3212211yCCyCyCB;)1()(3212211yCCyCyCC.)1()(3212211yCCyCyCDD例例2.提示提示:3231,yyyy都是对应齐次方程的解,二者线性无关.(反证法可证)3322311)()()(yyyCyyCC3322311)()()(yyyCyyCD例例3.已知微分方程)()()(xfyxqyxpy 个解,2321xxeyeyxy求此方程满足初始条件3)0(,1)0(yy的特解.解解:1312yyyy与是对应齐次方程的解,且xexeyyyyxx21312常数因而线性无关,故原方程通解为)()(221xeCxeCyxxx代入初始条件,3)0(,1)0(yy,2,121CC得.22xxeey故所求特解为有三