ImageVerifierCode 换一换
格式:PPT , 页数:49 ,大小:2.43MB ,
文档编号:3529817      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3529817.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(现代控制理论第六章课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

现代控制理论第六章课件.ppt

1、第第6章章 状态观测与状态最优估计状态观测与状态最优估计 某些状态量,或者由于不具明确的物理意义,或者由于量测手段的限制,在工程实际中不能直接获取它们。状态观测器可实现对状态的重构。而对于存在随机噪声的系统,则必须利用统计方法对状态量进行最优估计。1 状态重构与状态观测器状态重构与状态观测器 一、状态重构问题一、状态重构问题 xAxBuyCx 输入量u和输出量y总是可以直接量测的,能否通过输入量u和输出量y间接获取状态量的信息。为此,对输出方程进行逐次微分运算,并代之以状态方程,可得:2(1)(1)(2)(3)(2)nnnnnyCxyCx=CAx+CBuyCAx+CBu=CA x+CABu+C

2、BuyCAx+CABu+CABu+CBu(1)(2)(3)(2)(1)nnnnnyCyCBuCAxyCABuCABuCBuCA写成矩阵方程形式:矩阵 满秩,x有唯一解。但实际应用中不可取。1()TTTTnTTCA CAC启示:如果系统满足一定条件,利用系统的输入量和输出量,得到原系统状态量的间接值 ,它在一定的指标下与x(t)等价。()tx 称 为状态量x(t)的重构值,将得到重构状态 的系统称为状态观测器,表示为 。等价性指标一般采用渐近等价,即()tx()txlim()lim()()0ttttt xxx如果状态观测器的维数与原系统的维数相同,称为全维状态观测器;如果状态观测器的维数小于原系

3、统的维数,称为降维状态观测器。二、全维状态观测器二、全维状态观测器1观测器的构成用原系统的结构、输入构造一个模拟系统:xAxBuyCx()x=xx=A xxAx有:()(0)(0)(0)ttteeAAx=xxx开环型状态观测器(1)A包含有不稳定的特征值时,即使很小的 也会使 远离x(t);(0)x()tx(2)观测器参数对原系统参数的任何偏离都会产生不利影响。所以开环型状态观测器不能实际使用。解决的办法是利用输出偏差 进行反馈,反馈矩阵为M。如图:()()()ttt yyy观测器的状态方程式为:()()xAxBuMyAxBuM yCx =AMC xBuMyMAMC 有望通过设计合适的偏差反馈

4、矩阵M以调整观测器系统矩阵的特征值(观测器极点),实现渐近等价指标下的状态重构。()()0()()ttttt 若的特征值都具有负实部,则有:,即:状态渐近重构。AMCxxx()()t 衰减的快慢由特征值位置决定。xAMC 所以,一个性能优良的观测器应该是所有极点可以任意配置的。这就是观测器的极点配置问题。2极点任意配置条件结论:系统能采用全维状态观测器重构其状态,并且能通过改变M矩阵任意配置观测器极点的充要条件是原系统完全能观。(,)(,)TTT 对偶证明:能观能控A B CACB(,)()TTTTTT 的 可以通过 任意配置特征值,kAC K CBAC KK 其转置 特征值不变,即通过 K

5、矩阵可任意配置特征值;()()TTTTAC KA K C 取 ,即矩阵(AMC)的特征值可通过M矩阵任意配置;TM K(1)判断 的能观性;显然原系统能观,它对应的全维状态观测器就能通过改变M矩阵任意配置它的极点。3极点配置算法(1)判定 的能观性;,A C(2)如能观,写出原系统的对偶系统 ;(,)A B C(3)利用状态反馈极点配置算法求出期望极点为 的状态反馈系统 的反馈矩阵 ;(1,2,)iin(,)kABK B CK(4)取 ;TMK(5)得状态观测器为:()xAMC xBuMy 对于单输出系统,除了通过对偶系统求解外,也有类似于单输入系统状态反馈极点配置的二种算法。方法一(解联立方

6、程):,A c*1*1101(1,2,)()()innniniinsssasa sa(2)根据一组期望的极点写出期望的特征多项式:0113()()det()(,)nysss m mm()由观测器方程写出观测器的特征多项式:xA mc xBumIA mc*011()()Tnssmmm(4)由 同次幂系数相等求出。m=1300111 1uy :已知系统 设计全维状态观测器,将极点配置在2、2。xxx例例6 611(5)将m代入方程 ,得出全维状态观测器。()yxAmc xBum解解(1)系统的能观性矩阵为1 11 2oAcQc满秩,系统能观;010011432141mmmmmm 有00011113

7、13 1 1101mmmmmm(3)观测器的系统矩阵 Amc00201011113 ()det()det()(21)1smmsssmm smmmsm 对应的特征多项式:IA mc31 即m*22 ()(2)44ssss(2)期望特征多项式为:(4)由*()()ss(5)得全维观测器为:133032003()(1 1)011111211yuyuy xA mc x Bu m=x+x系统的状态变量图为:方法二(利用能观规范型求):(1)先判断 的能观性,若能观,则往下进行;,A c(2)开环系统的特征多项式:1110detnnnssasa saIA(6)由 求得偏差反馈向量m,并代入观测器方程。(3

8、)由给定的期望极点求得期望的特征多项式:*1*1101()()nnninisssasa sa(4)按下式求取具有能观规范型形式的状态空间中的偏差反馈向量:000111111nnnmaamaamaam(5)求取将原系统化为能观规范型的变换矩阵P;m=Pm 对于期望极点的位置,仅从渐近收敛速度看,希望极点尽量远离虚轴。但是极点离虚轴太远,会使观测器频带过宽,不利于扼制观测器输入量的高频干扰。要根据工程实际折衷考虑。一般,系统中总有一部分状态变量是可以直接量测的。从而,只需构造维数小于n的观测器来得出另一部分状态变量(降维状态观测器)。如果 ,则有q个输出变量是相互独立的,那么由输出方程就能得出q个

9、状态变量。例如极端情况 ,则后q个输出量就是状态变量,可量测;一般情况下,降维状态观测器的最小维数为 。三、降维状态观测器三、降维状态观测器 0qCIrankqC=nrankC1.降维状态观测器的构成(,),rankq考虑系统,能观,A B CCA C1112xxDx=x=Qx=P xxyC引入非奇异变换,使新状态空间的状态量为:)n qnq n(变换阵 其中 为使 非奇异的任意矩阵DQDQC使新状态空间的输出矩阵为:0qC=CP=I11111122212221220q新状态空间有:2xxBAAxuxAABxxyIxx0q为什么一定有?CI1 00qq 因为 又可表示为:DC CPCQ=CCD

10、CCICIC q维分状态向量 直接由y得出,而 维分状态向量 需要通过观测器重构。由上面式子可写出:2x()nq1x1111121211222xA xA yB uyA xA yB u121222为上述子系统的输入向令量为上述子 系统的输出向量vA yB u wyA yB u 1111211()n q于是上述-维子系统可写为:xA x w A x 为了重构(n-q)维状态向量 ,只要构造上述子系统的全维状态观测器即可。1x 由于原系统能观,非奇异变换后仍然能观,它的部分状态变量构成的子系统当然也能观。所以能对上述子系统构造全维状态观测器。有:111211112111212221121112122

11、2()()()()()()()xAMAxMwAMAxA yB uM yA yB uAMAxBMB uAMAyMy 上式含有输出的导数项,这对于观测器抗干扰及观测值的唯一性考虑都是不允许的,为此引入一个新的状态量:1zxMy11211212221121()()()zAMAzBMB uAMAAMAM y于是,降维状态观测器的方程可写为:或者写为:1121121222()()()()zAMAz+MyBMB uAMAy而状态量的重构值为:12xzMyx yx如将非奇异变换矩阵表示为:112P=QPP则在原状态空间中状态量的重构值为:1212()zMyxPxPPP zMyP y y此即为(n-q)维降维

12、状态观测器,也称 Luenberger观测器。降维状态观测器结构图为:2.降维状态观测器的设计算法 判别(A,C)的能观性,并确定q和 n-q:rankqC()1112 n q nq n 构造,任取但使 非奇异,并求出DQDQQPPC P PP Pn(n-q)nq1111112212220q得:,BAAAP APBP BCCPIAAB 对原系统实施非奇异变换:1x=Px=Q x 写出降维状态观测器方程:11211212221121()()()zAMAzBMB uAMAAMAM y并按观测器极点配置算法求出M;写出状态量 的估计值 :xx12xzMyx yx 经反变换求出原系统状态 x 的估计值

13、 :x1212()zMyxPPP zMyP y y1001001101001011000113系统 试设计一个降维状态观测器,希望极点为-。xxu yx例例6 6-2 2:21000111003012100013orankrankrank解:能观性判别 CSCACA1 0 020 1 1rankrankq 并有C3 21nq 1 非奇异变换,得x=Px=Qx112001100011010 101100 构造变换矩阵 并求出DQCQPP1110001010,10,10102010001AP APBP BCCP11A12A21A22A1B2B0qI01mm 令=,写出降维状态观测器方程:m*110

14、0()()13 40sssmsmmm 由得:,可任取,如取 112112122211210101010101112101001122()()()010(1)(01)102100 00(1)011(1)1 2(2 )zzmmzmmmmmmmmuym zmmmm mmuy AmABmB uAmAAmAm y uy 11A21A1B2B12A22A11A21A04m=即:1122223070163716uyzzzuyuy 降维观测器方程为:122111222044yzzyyxzyyyy写出状态量 的估计值 为:x x myxyx11122222 010()1(4)013 100 4yyzzyzyyz

15、y xPmyP y=:通过反变换得到 的估计值 x x可以画出降维状态观测器如下:2 引入观测器的状态反馈控制系统引入观测器的状态反馈控制系统 一、系统的构成一、系统的构成 控制系统由三部分组成:被控对象、状态观测器、状态反馈控制。结构图如下:控制对象:xAxBuyCx()状态观测器(全维):xAMC xBuMy 控制作用:uvKx ()即:xAxBKxBvxMCxAMCBK xBv yCx将三部分合在一起,即得含观测器的状态反馈控制系统:0kM :xABKxBvMCAMCBKxBxxyCx二、系统的特性:二、系统的特性:1、系统的维数=原系统的维数+观测器的维数。系统的特征值集合=状态反馈系

16、统的特征值集合+观测器的特征值集合。系统矩阵为:kmABKAMCAMCBK引入非奇异变换:100 nnnnnn有IIPPIIII1000 0nnkmkmnnnnnnnIIABKAPA PIIIIMCAMCBKIABKABKBKIIAMCAMCAMC有:det()det()det0 det()det()KMKMssssss 状态反馈的特征值观测器特征值IABKBKIAIAIAMCIABKIAMC2、由上式还可以得出结论:通过K 配置系统特征值(闭环极点)和通过M配置观测器特征值(极点)是互相分离的,可以完全独立地进行。这就是分离性原理。可见,系统的特征值由状态反馈系统的特征值和状态观测器的特征值

17、二部分组成。3、观测器的引入不改变原状态反馈系统的传递函数矩阵。上面的讨论给出了 ,同样可得新状态空间的输入矩阵和输出矩阵:KMA100nKMKMnnIBBBP BIIB000nKMKMnnICCPCCII非奇异变换不改变传递函数矩阵,所以有:进一步分析可知,具有按能控性分解的形式,能控子系统为 ,观测器部分是不能控的。所以,观测器的引入使状态反馈控制系统不再保持能控性。11111111()()()000()()()()000()()(KMKMKMKMKMKMKMKssssssssss GCIABCIABIA BKBKBCIAMCBIA BKIA BKBKIAMCCIAMCCIA BKBG)s

18、1111100PQPP QRRR分块矩阵的求逆公式:必发生了零极点相消现象,相消的n个极点是属于观测器的。由于观测器设计保证了其极点的渐近稳定性,所以零极点相消不影响闭环系统的正常运行。,KMKMKmABC,ABK B C 4、观测器为渐近等价,观测器动态特性将影响闭环系统动态特性,要求观测器的动态过程快于闭环系统的动态过程是合理的。通常把观测器特征值的负实部取为状态反馈系统特征值的负实部的23倍。010000020100010004011000332121uyjj:设计一个引入降维状态观测器的状态反馈控制系统,要求:观测器极点为:-,-系统的闭环极点为:-,-,-xxx例例6 6-3 3解解

19、:(1)独立设计降维状态观测器;1000010000200002o1)首先判断系统的能观性:,系统能观。Q4133nqn q,设计 维状态观测器;2)构造非奇异变换矩阵Q,使变换后的0 0 0 1C对于该系统可以通过重新安排状态变量实现,即输出方程:1423324110000001xxxxyxxxx状态方程为:4433221104001100000200100100 xxxxuxxxx11A21A12A22A1B2B3)降维状态观测器的方程为11211212221121001122012()()()0401 100001 00020 10040 001000020mmmmummmmm zAmA

20、zBmBuAmAAmAm yz0011221020101222120014041 10 002 12mmmmymmmm mmmumm mymmmz观测器的特征多项式为:0321210224)det1(24)(24)02smssmsm smsmmsm (32()(3)(3 2)(3 2)93139sssjsjsss 由 求得:()()ss4)降维状态观测器的方程为期望的特征多项式应为:01237.517.59mmm ,1122330437.51267.51017.50120029146zzzzuyzz5)状态量 的重构值为:14112323232137.537.517.517.599zxzyzy

21、xzyzxzyxyy xzMyx yx12xx=x6)再顺序安排状态变量,得状态量x的重构值:1233241917.537.5xyxzyxzyxzyx(2)独立设计状态反馈控制;1)首先判别系统的能控性:0102102001041040cQ系统能控;2)由给定的期望闭环极点求得期望的闭环系统特征多项式为:*432()(1)(2)(1)(1)510104ssssj sjssss 3)由闭环系统动态方程写出的闭环系统特征多项式为:012301231230231230234321302101002()det()det001422 010144 ()(4)22skskkkssskkkskskkkkkk

22、ssskkskkkskskk skksk sk IAbk4)由 求得:*()()ss0123251610kkkk ,(3)引入状态观测器的状态反馈控制为:251610uvv kx=x11123223233410437.51267.591017.50120 17.502914637.5xyzzxzyzzuyxzyzzxzy010000020110000001000401uy,xxx被控对象:观测器:251610uvv kx=x控制作用:可画出引入观测器的状态反馈控制系统的状态变量图:3 状态最优估计状态最优估计 一、状态估计问题的描述一、状态估计问题的描述()()()()()()()tttttt

23、t xAxBuFww(t)为m维随机干扰(噪声)向量,称为系统(输入)噪声;状态方程:测量方程:()()()()tttty=Cx+v(t)为q维随机干扰(噪声)向量,称为测量噪声;所谓状态估计就是根据测量值y(t)及随机干扰的统计特性,对系统的状态量进行估计,得出尽量接近状态量真实值x(t)的估计值 。()tx 希望在一定的准则函数下所作出的估计是最好的,即最优估计问题。最优估计的解通过准则函数极小化(或极大化)得出。用准则函数(或指标函数)来衡量估计的好坏。不同的准则函数对应得出不同的估计方法。二、最小二乘估计二、最小二乘估计以误差平方和最小作为准则函数。对系统进行k次测量,记第i次测量为:

24、iiiy=C x+k次测量后,可得:111222kkkyCyCxyC 1kqkqn1kq()()()TJxyCxW yCx以加权误差平方和(按测量值的精度分配权值)最小作为准则函数:220TTJ C WyC WCx=x1()TTx=C WCC Wy1、静态最小二乘估计 假设了测量过程中x不变 2、动态最小二乘估计实际的控制系统状态量是变化的,变化规律由系统的状态方程决定:线性定常离散系统,下标表示时间,仅考虑测量噪声 输入为确定性输入时,可设 0u=1iiiiixGxyCx 0ii kiiiikiyCxCG xCGx 0i kiikxGx=G x考虑 ,有:i kiikyCxCGx1()()(

25、)ki kTi kkikiikiJxyCGxW yCGx12()()0ki kTTi kiikikJ GC W yCGx=x111()()kki kTTi ki kTTkiiiiixGC WCGGC W y得:111()()kki kTTi ki kTTkiiixGC CGGC yW=I时为:当同时考虑系统噪声可得到类似的结果。由测量序列 求得估计值 的基础上,通过新测量值 对 的修正得出新估计值 ,解决存储量和计算量不断增大的问题。3、最小二乘估计的递推算法 12,ky yykx1kykx1kx以 的动态估计为例:W=I11111111111111111111111()()()()()()(

26、)()kki kTTi ki kTTkiiikki kTTi kTi kTTTikiikkTi kTTi kTTi kTTTikii xGC CGGC yGC CGC CGC yC yGGC CGGC CGGC yC y令:1kkKxGx11()ki kTTi kkiPGC CG1TkkKPGP G考虑用 替代 ,上式为:11111111 TTkkkKkKkKxPC CPxC yi kikyCGxiy1111111()TTkkkKkKkKkKxxPCICPCyCx111111()()ABCAA B ICA BCA1111TTkkKkKKPCICPC再令:11111()kkkkKkKxxKyCx

27、则有:11111111111()ki kTTi kTkkkKkKi PGC CGP+C CIKC P还可推导出:递推计算:kx1kKxkP1kKP1kK1kx1kP 如果估计值 是测量值 的线性函数,则只需事先知道系统噪声和测量噪声的一、二阶矩,即线性最小方差估计。三、线性最小方差估计三、线性最小方差估计估计值的方差最小作为准则函数。一般需要已知系统噪声、测量噪声的概率密度以及它们的联合概率密度,较难满足。xy考虑估计值是测量值的线性函数:x=a+By()()()()()TTVarEExxxxxa+Byx a+Byx估计值的方差:()()()()()(,)(,)TTTTVarEEEEEVarV

28、arCovCovxbxxB yybxxB yybbxBy Bx y BBy x EEbaxBy令:则:要求 最小,必须有:11111 (,)(,)(,)()(,)(,)()(,)(,)()()(,)()(,)()(,)TTTTTVarVarCovCovCovVarCovCovVarCovCovVarVarCovVarVarCovVarCov=bbxBy Bx y BBy xx yyy xx yyy xBx yyyBx yybbxx yyy x()Var x0b1(,)()CovVarBx yy由此得:1 (,)()()EEECovVarEx=a+By=xBy+By=xx yyyy TVarVa

29、ryy(,)(,)TCovCovx yy x 在已知状态量和测量量(或者系统噪声和测量噪声)的一、二阶矩时,就能得到状态量的线性最小方差估计值。四、卡尔曼滤波四、卡尔曼滤波基于线性最小方差估计的递推算法。为实际应用提供了可能性。,11,11kk kkk kkkkkk-xxFwyC x 确定性输入,设 0u=,1k k-为一步转移矩阵 系统噪声和测量噪声为零均值的白噪声,它们相互独立,并与状态量也不相关。111111111111()kkkiikkkkkkiikaaaaaaaaakkkkkk1一步预测与新息:一步预测 一步预测误差(新息)加权修正系数 11()kkkkk kk kxxKyC x一步

30、预测 一步预测误差 增益矩阵,11,11()kk kkkkkk kk-xxKyC x,111k kkk k-xx估计值:与 、不相关,则:2估计误差方差阵的求取:,11,11,11,11 ()()()()()kkkkk kkkkkkk kkkkkk kkkkkkkkkk kkkk-xxxxxK yK C xIK CxxKC xyIK CxxK 估计误差:kkkkyC x 估计误差的方差阵:,11,11()()()()()()TkkkkkTTTTkkkk kkkkkk kkkkkkEE-PxxxxIK CxxKxxIK CK ,11,11,11,11()()()()()()()()TTTTkkk

31、kk kkkk kkkkkkkkTTTkkkk kkkk kkkkkkkEEE-PIK CxxxxIK CKKIK CxxxxIK CK R K k kx1kx TkkkE R 一步预测误差的方差阵:,11,11111()()()()TTkk kkkk kkkkk kk kk kEE-Pxxxxxxxx又 与 、不相关,可得:11111()()TTkkkkkkkkk kTTTTTkkkkkkkkkkkk kk kk kk kPIK CPIK CK R KPK C PPC KK C PC KK R K得:,11,11,11,11,11,111,111,1111,11,1,11111()()()(

32、)()()Tk kkk kkk kkk kkk kkk kkk kTTTTk kkkk kkkkk kkk kTk kkkkkkEEE-PxFwxxFwxxxFwxxwFxxxx,1,11,1,11,1,11,1 TTkk kkk kTTk kkk kk kkk kFQFP FQF1kw1kx1kx111TkkkEwwQ 3增益矩阵 的求取:kK估计误差方差最小等价于误差方差阵的迹最小,即:()0kktrPK1111()()()()TTTTTkkkkkkkkkkkkk kk kk kk ktrtrtrtrtrtrPPK C PPC KK C PC KK R K而:和 为对称矩阵,所以有:111

33、1()()()TTTTTTTkkkkkkkkkkkk kk kk kk kktr PPCPCKC PCC PCKRRK()()TTTtrtrA XXAAXX()()TTtrXAXX AAX11()222TTkkkkkkkk kk kktr PPCK C PCK RK1k kPkR、令其为零,解得:111()TTkkkkkk kk kKPCC PCR1111111111111111 ()()()TTTTTkkkkkkkkkkkkk kk kk kk kTTTTkkkkkkkkkk kk kk kk kTTTTTTkkkkkkkkkkkkk kk kk kk kk kk kkkk kkPPK C

34、PPC KK C PC KK R KPK C PPC KKC PCR KPK C PPC KPCC PCRC PCR KPK C P111111 ()TTTTkkkkkkkk kk kk kk kkkk kPC KPC KPK C PIK CP可得:总结上面可知,卡尔曼滤波由4个基本方程组成,它们是:(1)一步预测误差方差阵:,11,1,11,11TTk kkk kk kkk kk kPP FQF(2)最优滤波增益阵:111()TTkkkkkk kk kKPCC PCR(3)状态最优估计方程:11()kkkkk kk kxxKyC x,111k kkk k-xx(4)估计误差方差阵:1()kk

35、kk kPIK CP其中一步预测方程:TkkkE R 111TkkkEwwQ卡尔曼滤波示意图:一步预测最优估计基本方程应用时的几点说明(稳定性、初值、发散);带控制作用项系统的卡尔曼滤波;系统噪声与测量噪声相关的卡尔曼滤波;连续系统的卡尔曼滤波。教材介绍了卡尔曼滤波的有关问题:五、随机线性系统的最优控制五、随机线性系统的最优控制()()()()()()()()()()()ttttttttttt xAxBuFwy=Cx+0()()()()()()()()ftTTTffccJEtttttttt dtxSxxQxuRu系统:二次型性能指标:最优控制的解为:*()()()cttt uKx()tx是状态

36、量x(t)的最优估计值,是下面卡尔曼滤波方程的解:()()()()()()()ktttttttxAxKyCx()ktK是卡尔曼滤波增益矩阵,由滤波增益方程求得:1()()()()TkkttttKPCR()ktP是下面最优估计的矩阵黎卡提微分方程的解:()()()()()()()()()()()TTkkkkktttttttttttPAPPAFQFKCP最优控制的状态反馈矩阵 由下式求得:()ctK1()()()()TcccttttKRBP()ctP是下面最优控制的矩阵黎卡提微分方程的解:1()()()()()()()()()()()TTccccccctttttttttttPAP+PA+QPBRBP方程的终端条件是:()ftPS随机线性系统的最优控制由卡尔曼滤波器和最优控制器两部分组成。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|