ImageVerifierCode 换一换
格式:PPTX , 页数:15 ,大小:332.46KB ,
文档编号:3553094      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3553094.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(Q123)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(4.1.1n次方根与分数指数幂ppt课件-2022新人教A版(2019)《高中数学》必修第一册.pptx)为本站会员(Q123)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

4.1.1n次方根与分数指数幂ppt课件-2022新人教A版(2019)《高中数学》必修第一册.pptx

1、温故知新温故知新1.整数指数幂)0(10aa),0(1*Nnaaann求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.)(.*Nnaaaaanna底数底数指数指数幂幂读作读作“a的的n次方次方”或或“a的的n次幂次幂”nmnmaaanmnamaannnbaba)(2、整数指数幂的运算性质:nnnbaba)(nmnmaa?42乘方运算乘方运算16?2开方运算开方运算乘方和开方是互逆运算!例如:因为例如:因为(4)2=16,所以所以4叫做叫做16的平方根的平方根;(3)2=9,3叫做叫做9的平方根的平方根(-2)3=-8,-2叫做叫做-8的立方根的立方根 23=8,2叫做叫做8的立方根的立方

2、根温故知新温故知新41639283283(3)4=81 35=243(-3)5=-243 xn=an次方根定义新课讲授新课讲授 1.若若xn=a,则则x叫做叫做a的的n次方根次方根na被开方数根指数根式(n为奇数为奇数);nax(当当n是偶数是偶数,且且a0).nax axn奇次方根奇次方根 1.正数的奇次方根是一个正数正数的奇次方根是一个正数,2.负数的奇次方根是一个负数负数的奇次方根是一个负数.偶次方根偶次方根 2.负数没有偶次方根负数没有偶次方根 1.正数的偶次方根有两个且互为相反数正数的偶次方根有两个且互为相反数 新课讲授新课讲授2)2(33)2(55)3(2)2(33544)4(22

3、3254aann)(为偶数为奇数nanaann|,|,有什么区别?和nnnnaa)(思考:?,0510aa则若?412a 2552510aaa510a3443412)(aaa412a当根式的被开方数(看成幂的形式)的指数能被根指数整除时,根式可以表示成分数指数幂的形式.【思考】当根式的被开方数的指数不能被根指数整除时,根式是否也能表示为分数指数幂的形式呢?新课讲授新课讲授分数指数幂的概念正数的正分数指数幂:)1,0(*nNnmaaanmnm正数的负分数指数幂:)1,0(11*nNnmaaaanmnmnm0的正分数指数幂等于0,0的负分数指数幂没意义新课讲授新课讲授分数指数幂的运算性质).,0,

4、0()(3();,0()(2();,0()1(QrbabaabQsraaaQsraaaarrrrssrsrsr我们规定了分数指数幂的意义以后,指数的概念就从我们规定了分数指数幂的意义以后,指数的概念就从整整数指数幂数指数幂推广到推广到有理数指数幂有理数指数幂.关于整数指数幂的运算性关于整数指数幂的运算性质,对于有理指数幂也同样适用,质,对于有理指数幂也同样适用,即对任意有理数即对任意有理数r,s,均有下面的性质:均有下面的性质:例题讲解例题讲解例2 求值43328116)2(8)1(例3 用分数指数幂的形式表示下列各式(其中a0)3322)2()1(aaaa 把底数化成幂的形式,把底数化成幂的

5、形式,把根式化成分数指数幂把根式化成分数指数幂当有多重根式时当有多重根式时,要由里向外层层转化要由里向外层层转化对于有分母的对于有分母的,可以先把分母写成负指数幂可以先把分母写成负指数幂.随堂练习P107 1 2例4 计算下列各式(式中的字母均是正数)例题讲解例题讲解4233288341656131212132)(3(;)(2();3()6)(2)(1(aaanmbababa利用指数幂的运算性质化简求值的方法负指数正指数根式分数指数幂小数分数同时兼顾运算顺序化简求值结果一般用分数指数幂形式表示方法小结方法小结随堂练习P107 3实数指数幂:无理数指数幂a(a0,为无理数)是一个确定的实数.这样

6、,我们就将指数幂ax(a0)中的指数x的范围从整数逐步拓展到了实数,实数的指数幂是一个确定的实数.【指数幂的拓展历程】正整数指数幂负整数指数幂零次幂整数指数幂分数指数幂有理数指数幂无理数指数幂实数指数幂课堂小结课堂小结正数的奇次方根是正数正数的奇次方根是正数.负数的奇次方根是负数负数的奇次方根是负数.零的奇次方根是零零的奇次方根是零.(1)奇次方根有以下性质:奇次方根有以下性质:,21,N,0,2,N.nnankkxnaak k 那么那么如果如果,axn(2)偶次方根有以下性质:偶次方根有以下性质:正数的偶次方根有两个且是相反数,正数的偶次方根有两个且是相反数,负数没有偶次方根,负数没有偶次方根,零的偶次方根是零零的偶次方根是零.若若),1(*Nnnaxn,则,则 叫做叫做 的的 次方根次方根xanaann)(为偶数为奇数nanaann|,|,两个重要公式mmnnaa(0,N,1)am nn 且且分数指数幂11(0,N,1)mnmnmnaam nnaa 且且THANKSpL O R E M IPSUM

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|