1、板块六.回归分析知识内容一随机抽样1随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:简单随机抽样:从元素个数为的总体中不放回地抽取容量为的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样抽出办法:抽签法:用纸片或小球分别标号后抽签的方法随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表表中每一位置出现各个数字的可能性相同随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法简单随机抽样是最简单、最基本的抽样方法系统抽样:将总体分成均衡的若干部分,然后按照预先制定的
2、规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法抽出办法:从元素个数为的总体中抽取容量为的样本,如果总体容量能被样本容量整除,设,先对总体进行编号,号码从到,再从数字到中随机抽取一个数作为起始数,然后顺次抽取第个数,这样就得到容量为的样本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法
3、叫做分层抽样分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛2简单随机抽样必须具备下列特点:简单随机抽样要求被抽取的样本的总体个数是有限的简单随机样本数小于等于样本总体的个数简单随机样本是从总体中逐个抽取的简单随机抽样是一种不放回的抽样简单随机抽样的每个个体入样的可能性均为3系统抽样时,当总体个数恰好是样本容量的整数倍时,取;若不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等,为二频率直方图列出样本数据的频率分布表和频率分布直方图的步骤:计算极差:找出数
4、据的最大值与最小值,计算它们的差;决定组距与组数:取组距,用决定组数;决定分点:决定起点,进行分组;列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率绘制频率分布直方图:以数据的值为横坐标,以的值为纵坐标绘制直方图,知小长方形的面积组距频率频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线总体密度曲线精确地反映了一个总
5、体在各个区域内取值的规律三茎叶图制作茎叶图的步骤:将数据分为“茎”、“叶”两部分;将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线;将各个数据的“叶”在分界线的一侧对应茎处同行列出 四统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差数据的离散程序可以用极差、方差或标准差来描述极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度;样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根一般地,设样本的元素为样本的平均数为,定义样本方差为,样本标准差简化公式:五独立性检验1两个变量之间的关系;常见的有两类:一类是确定性的函数关
6、系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系2散点图:将样本中的个数据点描在平面直角坐标系中,就得到了散点图散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系3如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关此时,散点图中的点在从左上角到右下角的区域散点图可以判断两个变量之间有没有相关关系4统计
7、假设:如果事件与独立,这时应该有,用字母表示此式,即,称之为统计假设5(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为,用它的大小可以用来决定是否拒绝原来的统计假设如果的值较大,就拒绝,即认为与是有关的统计量的两个临界值:、;当时,有的把握说事件与有关;当时,有的把握说事件与有关;当时,认为事件与是无关的独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的1独立性检验的步骤:统计假设:;列出联表;计算统计量;查对临界值表,作出判断2几个临界值:联表的独立性检验:如果对于
8、某个群体有两种状态,对于每种状态又有两个情况,这样排成一张的表,如下:状态状态合计状态状态如果有调查得来的四个数据,并希望根据这样的个数据来检验上述的两种状态与是否有关,就称之为联表的独立性检验六回归分析1回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线2最小二乘法:记回归直线方程为:,称为变量对变量的回归直线方程,其中叫做回归系数是为了区分的实际值,当取值时,变量的相应观察值为,而直线上对应于的纵坐标是设的一组
9、观察值为,且回归直线方程为,当取值时,的相应观察值为,差刻画了实际观察值与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差我们希望这个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点记,回归直线就是所有直线中取最小值的那条这种使“离差平方和为最小”的方法,叫做最小二乘法用最小二乘法求回归系数有如下的公式:,其中上方加“”,表示是由观察值按最小二乘法求得的回归系数3线性回归模型:将用于估计值的线性函数作为确定性函数;的实际值与估计值之间的误差记为,称之为随机误差;将称为线性回归模型产生随机误差的主要原因有:所用的确定性函数不恰当即模型近似引起的误差;忽略了某些因素的影响,通常这些
10、影响都比较小;由于测量工具等原因,存在观测误差4线性回归系数的最佳估计值:利用最小二乘法可以得到的计算公式为,其中,由此得到的直线就称为回归直线,此直线方程即为线性回归方程其中,分别为,的估计值,称为回归截距,称为回归系数,称为回归值5相关系数: 6相关系数的性质:;越接近于1,的线性相关程度越强;越接近于0,的线性相关程度越弱可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关7转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数8一些备案回归(regression)一词的来历:“回归”这个词英国统计学家Fra
11、ncils Galton提出来的1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高Galton把这种后代的身高向中间值靠近的趋势称为“回归现象”后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析回归系数的推导过程:,把上式看成的二次函数,的系数,因此当时取最小值同理,把的展开式按的降幂排列,看成的二次函数,当时取最小值解得:,其中,是样本平均数9 对相关系数进行相关性检验的步骤:提出统计假设:变量不具有线性相关关系
12、;如果以的把握作出推断,那么可以根据与(是样本容量)在相关性检验的临界值表中查出一个的临界值(其中称为检验水平);计算样本相关系数;作出统计推断:若,则否定,表明有的把握认为变量与之间具有线性相关关系;若,则没有理由拒绝,即就目前数据而言,没有充分理由认为变量与之间具有线性相关关系说明:对相关系数进行显著性检验,一般取检验水平,即可靠程度为这里的指的是线性相关系数,的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系这里的是对抽样数据而言的有时即使,两者也不一定是线性相关的故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释典例分析题型一 线性相关及回归【例1
13、】 已知变量与之间的相关系数是,查表得到相关系数临界值,要使可靠性不低于,则变量与之间( )A不具有线性相关关系B具有线性相关关系C线性相关关系还待进一步确定D具有确定性关系【例2】 当相关系数时,表明( )A现象之间完全无关 B相关程度较小 C现象之间完全相关 D无直线相关关系【例3】 下列结论中,能表示变量具有线性相关关系的是( )A B C D 【例4】 下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数B流通费用水平与利润率之间的相关关系为C商品销售额与利润率之间的相关系数为D商品销售额与流通费用水平的相关系数为【例5】 在吸烟与患肺病这两个分类变量的计算
14、中,下列说法正确的是( )若的值为6635,我们有的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;从独立性检验可知有的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;若从统计量中求出有的把握认为吸烟与患肺病有关系,是指有的可能性使得判断出现错误;以上三种说法都不正确【例6】 设两个变量和之间具有线性相关关系,它们的相关系数是,关于的回归直线的斜率是,纵截距是,那么必有( ) A与的符号相同 B与的符号相同C与的相反 D与的符号相反【例7】 定义:点与直线的“纵向距离”为已知三点,存在直线,使三点到直线的“纵向距离的平方和”最小求直线的方程和
15、的最小值;判断点与直线的位置关系【例8】 (2009宁夏海南卷理)对变量,有观测数据,得散点图1;对变量,有观测数据,得散点图2 由这两个散点图可以判断A变量与正相关,与正相关B变量与正相关,与负相关C变量与负相关,与正相关D变量与负相关,与负相关【例9】 为了考查两个变量和之间的线性关系,甲、乙两位同学各自独立做了次和次的试验,并且利用线性回归方法求得回归直线分别为,已知两人得到的试验数据中,变量和的数据的平均值都对应相等,那么下列说法正确的是()A直线和一定有交点 B直线一定平行于直线C直线一定与重合 D以上都不对【例10】 某地高校教育经费与高校学生人数连续6年的统计资料如下:教育经费(
16、万元)316343373 393418455在校学生(万人) 11 16 18 20 22 25试求回归直线方程,估计教育经费为500万元时的在校学生数【例11】 一家庭问题研究机构想知道是否夫妻所受的教育越高越不愿生孩子,现随机抽样了对夫妻,计算夫妻所受教育的总年数与孩子数,得结果如下191721181512142013112321试求对回归直线方程【例12】 某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:画出散点图;求回归直线方程【例13】 某五星级大饭店的住屋率与每天每间客房的成本(元)如下: 10075 65 55 50 20002500 2800 3200 4000
17、试求对回归直线;若的表示不变,以小数表示(如表为),求新的回归直线【例14】 某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日 期月日月日月日月日月日月日昼夜温差()就诊人数(个)该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验若选取的月与月的两组数据,请根据至月份的数据,求出关于的线性回归方程;若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?【
18、例15】 某种产品的产量与单位在成本的资料如下:产量(千件)234 345单位成本(元/件) 73 72 71 73 69 68试求:计算相关系数;对直线回归方程;指出产量每增加件时,单位成本平均下降了多少元?【例16】 求回归直线方程以下是收集到的某城市的新房屋销售价格与房屋的大小的数据:房屋大小() 销售价格(万元) 画出数据的散点图;用最小二乘法求回归直线方程;估计该城市一个平米的房屋销售价格大约为多少?写一个程序,计算出和的值,再比较大小【例17】 (07广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据 3 4 5 6 3 4 请画出上表数据的散点图;请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;已知该厂技改前100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)【例18】 测定某肉鸡的生长过程,每两周记录一次鸡的重量,数据如下表:(周) 2 4 6 8 10 12 14() 由经验知生长曲线为,试求对的回归曲线方程【例19】 为了研究某种细菌随时间x变化的繁殖个数,收集数据如下:天数123456繁殖个数612254995190作出这些数据的散点图;求出y对x的回归方程10智康高中数学.板块六.回归分析.题库
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。