ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:222KB ,
文档编号:3604458      下载积分:18 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3604458.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(Exact-solution-of-the-diffusionconvection-equation-in-在对流扩散方程精确解-PPT精选课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

Exact-solution-of-the-diffusionconvection-equation-in-在对流扩散方程精确解-PPT精选课件.ppt

1、Exact solution of the diffusion-convection equation in cylindrical geometryOleksandr Ivanchenko,Nikhil Sindhwani,and Andreas A.LinningerLaboratory for Product and Process Design,M/C 063University of Illinois at ChicagoChicago,IL 60607-7000,USA1NS,LPPDLPPD seminar:2nd September 2009Problem Formulatio

2、nNS,LPPD2()()CV rCD Ct u rC(r,t)=CS/C0q=Qin/h,or the radial conductive velocity field.00()2();()22ooooVV rrqV rVV rrrrrNS,LPPD32021VCCCCDtrrrrrBoundary conditions:Convection-diffusion equation in radial co-ordinates:0(0,)()(,)0C rtCfiniteC rL t(,0)()C r tf rInitial conditions:General solution,Separa

3、tion of variables.NS,LPPD4 ,C r tR rT t2211;TRqRD TtRrrr Substituting this in the convection-diffusion equation.Temporal solution.()expiiT tDti used because there could be more than one that satisfy the equation above.i has to be a positive number for the solution to be stable.0TD TNS,LPPD5Radial so

4、lution:00 RRRorr RRrRr()0R L 202/20(1)1-()with=222!(1)nniinnirVR rDnvwhere,=1-V0/D,also,By using Forbenius power series method of solution,This can also be written by using the definition of a Bessel function of the First Kind and order.(),iiR rrJrNS,LPPD6()0R L Using ,we can find the roots of the b

5、essel function equation at r=L.()=0;iiiisR LLJLLWhere,si,are the roots of the bessel function.Now,is known and we can write the final analytical solution0(,)expiiiiC r tA rJrDtNS,LPPD7By using the initial condition,we can find out Ai,by fourier-bessel decomposition:0220()LiiLisf rJrrdrLAsJrrdrLNOTE:

6、This solution fails when f(r)=0.This is the case when the domain is empty initially.Advanced solution:by decomposing steady state and dynamic parts.NS,LPPD8Steady state part and dynamic part of the solution are separated.Boundary Conditions:Initial Condition:dynss,=,t+C r tC rC r(0,)1 (,)0C rtC rL t

7、(,0)()0C r tf rNS,LPPD900202/1()1VDssVDVCCCDrrrrrrC rL Steady state solution:dynssdynssss,0=0=,0+,0()C rC rC rC rC rfor dynamic partf rC r At t=0:This gives the initial condition for dynamic part of the solution,which can be replaced in the general solution to give:NS,LPPD1000/02201LVDiVDiLisrJrrdrL

8、LAsJrrdrL Final Solution:00/0(,)exp1VDiiiVDirC r tA rJrDtLNS,LPPD11Solution for D=0.01 and=1NS,LPPD1200.10.20.30.40.50.60.70.80.91-0.200.20.40.60.81r N=20N=60Effect of number of terms used,more terms,smoother solution.NS,LPPD13Solution in Non-dimensional form:=Dt/L2,=r/L,P=Vo/D 202/2/2011;2(,)expPiPiiiVCCCCqPPDDCAJ()1PssC Steady state solutionNS,LPPD14Effect of Peclet Number on solution trajectories:0/PVDDevelopment of ConvectionNS,LPPD1500.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.91r/L IC,t=0.00s t=0.01s t=0.10s t=1.00s t=10.00s t=100.00s0CCrLThank YouNS,LPPD16

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|