1、第54课时 9.3 一元一次不等式组(1)教学目标1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。教学难点一元一次不等式组解集的理解知识重点一元一次不等式组的解集和解法。教学过程(师生活动)设计理念创设情境提出问题小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地。后来,小宝借来一副质量为66千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地猜
2、猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克,(1)从跷跷板的状况你可以概括出怎样的不等关系?(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重? 在讨论或议论中,列出不等式: 2x十x 72 2x十x672 其中x同时满足以上两个不等式 在议论的基础上,老师揭示: 一个量需要同时满足几个不等式的例子,在现实生活中还有很多用学生身边有趣的实例引入,一方面引起学生的参与欲,一方面也是知识拓展的需要设计此情境的意图在于:1、复习用一元一次不等式解应用题;2、感受同一个x可以有不同的不等式;3、x应该同时符合两个不等式的要求,为引出解集做铺垫类比探索引出新知问题2(教科书第143
3、页) 现有两根木条a和b,a长10 cm,b长3 cm.如果再找一根木条。,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求? 等式的性质1。如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10-3.类似于方程组,引出一元一次不等式组的概念和记法(教科书143页) 类比方程组的解,引出一元一次不等式组的解集的概念(教科书144页)利用数轴,师生一起将问题1、问题2的解集求出来把教科书上的“问题”作为“问题2”,是因为三角形的三边关系问题,学生可能习惯于10-3x10十3这种形式的表达,因而此处设计把它作为变量需同时满足两个不等式实例的一个补充
4、。渗透类比思想。初步感受求解集的方法。解法探讨出示教科书例1,解下列不等式组:(1) (2)小组讨论: 根据不等式组的解集的意义,你觉得解决例1需要哪些步骤?在这些步骤中,哪个是我们原有的知识,哪个是我们今天获得的新方法? 在讨论的基础上,师生一起归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)找出各个不等式的解集的公共部分(利用数轴) 师生一起完成例1 对于例1,解不等式并非新内容解题步骤的归纳和各解集公共部分的求取,才是新知识,却是学生自己可以领会的通过此处的讨论探索,对于多于两个不等式组成的不等式组的解集的求取,期望学生能实现无师自通先自主探究解题步骤,后具体解题,可以居
5、高临下地看待一元一次不等式组的解法巩固练习学生练习:教科书第147页练习1教师巡视、指导,师生共同评讲进一步熟悉解题步骤,熟练地利用数轴正确地查找公共部分。教师及时调控。小结与作业课堂小结1、 这节课你学到了什么?有哪些感受?2、 教师归纳:学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要;学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验提纲挈领,梳理总结。布置作业1、 必做题:课本第147页习题9.3第1、2、3题2、 选做题:(1
6、) 解不等式32x15,你觉得该怎样思考这个问题,你有解决的办法吗?(2) 求出不等式组的解集中的正整数。分层次布置作业。本课教育评注(课堂设计理念,实际教学效果及改进设想) 本节课的设计,以实际问题建立数学模型,通过数学问题引导学生找出问题解决的思路在这一过程主线下,辅以类比、探索、概括的学习方法,合理设计问题,安排讨论的最佳契机,及时揭示数学本质,引发数学思考,期望让学生在自主探索中学得自然、学得真切、学得主动、学得有效本节课的重点内容是一元一次不等式组的正确求解,关键却是不等式组求解的步骤总结,这一总结让学生自己归纳比教师直接告之效果更好;创设实际问题情境引出一元一次不等式组的意义,让学生产生学习不等式组的需求,也对解不等式的方法有很自然的联想看似费时,实是数学素养和数学思考的隐性提升5