ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:647.50KB ,
文档编号:361233      下载积分:2.95 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-361233.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(和和062)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角.doc)为本站会员(和和062)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角.doc

1、第十九讲 转化灵活的圆中角 角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来熟悉以下基本图形、基本结论注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探

2、讨【例题求解】【例1】 如图,直线AB与O相交于A,B再点,点O在AB上,点C在O上,且AOC40,点E是直线AB上一个动点(与点O不重合),直线EC交O于另一点D,则使DE=DO的点正共有 个 思路点拨 在直线AB上使DE=DO的动点E与O有怎样的位置关系?分点E在AB上(E在O内)、在BA或AB的延长线上(E点在O外)三种情况考虑,通过角度的计算,确定E点位置、存在的个数注: 弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法 【例2】 如图,已知ABC为等腰直角三形,D为斜边BC的中点,经过点A、D的O与边AB、AC、BC分别相交于点E、F、M,对于如

3、下五个结论:FMC=45;AE+AFAB;2BM2=BFBA;四边形AEMF为矩形其中正确结论的个数是( ) A2个 B3个 C4个 D5个 思路点拨 充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择【例3】 如图,已知四边形ABCD外接O的半径为5,对角线AC与BD的交点为E,且AB2=AEAC,BD8,求ABD的面积思路点拨 由条件出发,利用相似三角形、圆中角可推得A为弧BD中点,这是解本例的关键【例4】 如图,已知AB是O的直径,C是O上的一点,

4、连结AC,过点C作直线CDAB于D(ADDB),点E是AB上任意一点(点D、B除外),直线CE交O于点F,连结AF与直线CD交于点G (1)求证:AC2=AGAF;(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立请画出图形并给予证明;若不成立,请说明理由 思路点拨 (1)作出圆中常用辅助线证明ACGAFC; (2)判断上述结论在E点运动的情况下是否成立,依题意准确画出图形是关键 注:构造直径上90的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件【例5】 如图,圆内接六边形ABCDEF满足AB=CD=EF,且对角线AD、BE、CF相

5、交于一点Q,设AD与CF的交点为P 求证:(1);(2) 思路点拨 解本例的关键在于运用与圆相关的角,能发现多对相似三角形(1) 证明QDEACF;(2)易证,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有: (1)利用圆的定义判定;(2)利用圆内接四边形性质的逆命题判定学历训练1一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为 2如图,AB是O的直径,C、D、E都是O上的一点,则1+2= 3如图,AB是O的直径,弦CDAB,F

6、是CG的中点,延长AF交O于E,CF=2,AF=3,则EF的长为 4如图,已知ABC内接于O,AB+AC=12,ADBC于D,AD3,设O的半径为,AB的长为,用的代数式表示,= 5如图,ABCD是O的内接四边形,延长BC到E,已知BCD:ECD3:2,那么BOD等于( )A120 B136 C144 D1506如图,O中,弦ADBC,DA=DC,AOC=160,则BOC等于( ) A20 B30 C40 D507如图,BC为半圆O的直径,A、D为半圆O上两点,AB=,BC=2,则D的度数为( ) A60 B 120 C 135 D150 8如图,O的直径AB垂直于弦CD,点P是弧AC上一点(

7、点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F给出下列四个结论:CH2=AHBH;AD=AC;AD2=DFDP; EPC=APD,其中正确的个数是( ) A1 B2 C3 D4 9如图,已知B正是ABC的外接圆O的直径,CD是ABC的高 (1)求证:ACBC=BECD;(2) 已知CD=6,AD=3,BD=8,求O的直径BE的长 10如图,已知AD是ABC外角EAC的平分线,交BC的延长线于点D,延长DA交ABC的外接圆于点F,连结FB,FC (1)求证:FB=FC;(2)求证:FB2=FAFD;(3)若AB是ABC的外接圆的直径,EAC=120

8、,BC=6cm,求AD的长 11如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tanAPBtanCPD= 12如图,在圆内接四边形ABCD中,AB=AD,BAD=60,AC=,则四边形ABCD的面积为 13如图,圆内接四边形ABCD中,A60,B90,AD=3,CD=2,则BC= 14如图,AB是半圆的直径,D是AC的中点,B=40,则A等于( ) A60 B50 C80 D70 15如图,已知ABCD是一个以AD为直径的圆内接四边形,AB=5,PC=4,分别延长AB和DC,它们相交于P,若APD=60,则O的面积为( ) A25 B16 C15

9、D13 (2001年绍兴市竞赛题)16如图,AD是RtABC的斜边BC上的高,AB=AC,过A、D两点的圆与AB、AC分别相交于点E、F,弦EF与AD相交于点G,则图中与GDE相似的三角形的个数为( ) A5 B4 C3 D217如图,已知四边形ABCD外接圆O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=AE,且BD=,求四边形ABCD的面积 18如图,已知ABCD为O的内接四边形,E是BD上的一点,且有BAE=DAC 求证:(1)ABEACD;(2)ABDC+ADB CACBD19如图,已知P是O直径AB延长线上的一点,直线PCD交O于C、D两点,弦DFAB于点H,CF交AB于点E (1)求证:PAPB=POPE;(2)若DECF,P=15,O的半径为2,求弦CF的长 20如图,ABC内接于O,BC=4,SABC=,B为锐角,且关于的方程有两个相等的实数根,D是劣弧AC上任一点(点D不与点A、C重合),DE平分ADC,交O于点E,交AC于点F (1)求B的度数; (2)求CE的长; (3)求证:DA、DC的长是方程的两个实数根 参考答案 7

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|