1、代数初步知识一、用字母表示数1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。2 用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用 s 表示,速度 v 用表示,时间用 t 表示,三者之间的关系:s=vt v=s/t t=s/v 总价用 a 表示,单价用 b 表示,数量用 c 表示,三者之间的关系: a=bc b=a/c c=a/b (2)运算定律和性质加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c
2、=ac+bc 减法的性质:a-(b+c) =a-b-c (3)用字母表示几何形体的公式长方形的长用 a 表示,宽用 b 表示,周长用 c 表示,面积用 s 表示。c=2(a+b) s=ab 正方形的边长 a 用表示,周长用 c 表示,面积用 s 表示。c=4a s=a 平行四边形的底 a 用表示,高用 h 表示,面积用 s 表示。s=ah 三角形的底用 a 表示,高用 h 表示,面积用 s 表示。s=ah/2 - 1 - 梯形的上底用 a 表示,下底 b 用表示,高用 h 表示,中位线用 m 表示,面积用 s 表示。s=(a+b)h/2 s=mh 圆的半径用 r 表示,直径用 d 表示,周长用
3、 c 表示,面积用 s 表示。c=d=2r s= r扇形的半径用 r 表示,n 表示圆心角的度数,面积用 s 表示。s= nr/360 长方体的长用 a 表示,宽用 b 表示,高用 h 表示,表面积用 s 表示,体积用 v 表示。v=sh s=2(ab+ah+bh) v=abh 正方体的棱长用 a 表示,底面周长 c 用表示,底面积用 s 表示,体积用 v表示. s=6a v=a 圆柱的高用 h 表示,底面周长用 c 表示,底面积用 s 表示,体积用 v 表示. s 侧=ch s 表=s 侧+2s 底v=sh 圆锥的高用 h 表示,底面积用 s 表示,体积用 v 表示. v=sh/3 3 用字
4、母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。当“1”与任何字母相乘时,“1”省略不写。在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。4 将数值代入式子求值* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后- 2 - 写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。* 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。二、简易方程(一
5、)方程和方程的解1 方程:含有未知数的等式叫做方程。注意方程是等式,又含有未知数,两者缺一不可。方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。三、解方程解方程,求方程的解的过程叫做解方程。四、列方程解应用题1 列方程解应用题的意义* 用方程式去解答应用题求得应用题的未知量的方法。2 列方程解答应用题的步骤* 弄清题意,确定未知数并用 x 表示;* 找出题中的数量之间的相等关系;* 列方程,解方程;* 检查或验算,写出答案。3 列方程解应用题的方法* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。4 列方程解应用题的范围小学范围内常用方程解的应用题:a 一般应用题;b 和倍、差倍问题;c 几何形体的周长、面积、体积计算;- 3 - d 分数、百分数应用题;e 比和比例应用题。- 4 -