1、1.圆的定义:圆的定义:平面上到定点的距离等于定长的所有点平面上到定点的距离等于定长的所有点所组成的图形叫做圆;其中定点称为圆心,定长称为所组成的图形叫做圆;其中定点称为圆心,定长称为半径。半径。2圆有对称性圆有对称性(1)圆是轴对称图形,其对称轴是直径所在的直线;)圆是轴对称图形,其对称轴是直径所在的直线;对称轴有无数多条。对称轴有无数多条。(2)圆是中心对称图形,对称中心是圆心。)圆是中心对称图形,对称中心是圆心。(3)圆具有旋转不变性。)圆具有旋转不变性。3.圆中的有关概念:圆中的有关概念:(1)弦:连结圆上任意两点间的线段叫做弦,经过)弦:连结圆上任意两点间的线段叫做弦,经过圆心的弦是
2、直径圆心的弦是直径(2)弧:圆上任意两点间的部分叫做弧;大于半圆)弧:圆上任意两点间的部分叫做弧;大于半圆的弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧的弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧(3)等弧:在同或等圆中,能够完全重合的弧叫等)等弧:在同或等圆中,能够完全重合的弧叫等弧。弧。4圆心角、弧、弦三者之间的关系:圆心角、弧、弦三者之间的关系:(1).在同圆或等圆中,相等的圆心角所对的在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等;弦相等,所对的弧相等;(2).在同圆或等圆中在同圆或等圆中,相等的弦所对的圆心角相等的弦所对的圆心角相等相等,圆心角所对的弧也相等;圆心角所对的弧也相
3、等;(3).相等的弧所对的圆心角相等相等的弧所对的圆心角相等,所对的弦相所对的弦相等等.(三者知一得二)(三者知一得二)5圆周角定理及推论圆周角定理及推论同弧或等弧所对的圆周角等于它所对圆心角同弧或等弧所对的圆周角等于它所对圆心角的一半的一半,同弧或等弧所对的圆周角相等同弧或等弧所对的圆周角相等.半圆或直径所对的圆周角相等,都等于半圆或直径所对的圆周角相等,都等于90度度;90度度的圆周角所对的弦是直径的圆周角所对的弦是直径;所对的弧是半所对的弧是半圆圆.一、一、垂径定理垂径定理OABCDMAM=BM,重视:重视:模型模型“垂径定理直角三角形垂径定理直角三角形”若若 CD是直径是直径 CDAB
4、可推得可推得 AC=BC,AD=BD.1.1.定理定理 垂直于弦的直径垂直于弦的直径平分弦平分弦,并且平分并且平分弦所的两条弧弦所的两条弧.2 2、垂径定理的推论、垂径定理的推论CDAB,n由由 CD是直径是直径 AM=BM可推得可推得 AC=BC,AD=BD.OCD MAB平分弦(平分弦(不是直径不是直径)的直径垂直于弦)的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.注意注意:“直径平分弦则垂直弦直径平分弦则垂直弦.”这句话对吗这句话对吗?()错错OABCD1.两条弦在圆心的同侧两条弦在圆心的同侧OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧例例 OO的半径为的半径为1
5、0cm10cm,弦,弦ABCDABCD,AB=16AB=16,CD=12CD=12,则,则ABAB、CDCD间的间的 距离是距离是_ _ .2cm或或14cm 在在同圆同圆或或等圆等圆中中,如果如果两个圆心角两个圆心角,两条弧两条弧,两条弦两条弦,两条弦心距两条弦心距中中,有一组量有一组量相等相等,那么它们所对应的其余各组量都分别相那么它们所对应的其余各组量都分别相等等.OABDABD如由条件如由条件:AB=ABAB=AB OD=OD可推出AOB=AOB二、圆心角、弧、弦、弦心距的关系二、圆心角、弧、弦、弦心距的关系三、圆周三、圆周角定理及推论角定理及推论 9090的圆周角所对的弦是的圆周角所
6、对的弦是 .OABCOBACDEOABC 定理定理:在同圆或等圆中在同圆或等圆中,同弧或等弧同弧或等弧所对的圆周角相等所对的圆周角相等,都等于这弧都等于这弧所对的所对的圆心角的一半圆心角的一半.推论推论:直径所对的圆周角是直径所对的圆周角是 .直角直角直径直径判断判断:(1)相等的圆心角所对的弧相等相等的圆心角所对的弧相等.(2)相等的圆周角所对的弧相等相等的圆周角所对的弧相等.(3)等弧所对的圆周角相等等弧所对的圆周角相等.()()()1、如图、如图1,AB是是 O的直径,的直径,C为圆上一点,弧为圆上一点,弧AC度数为度数为60,ODBC,D为垂足,且为垂足,且OD=10,则,则AB=_,
7、BC=_;2、如图如图2,O中弧中弧AB的度数为的度数为60,AC是是 O的直径,那么的直径,那么OBC等于等于();A15 B45 C30 D603、在、在ABC中,中,A70,若,若O为为ABC的外心,的外心,BOC=;若;若O为为ABC的内心,的内心,BOC=图1图2A B C D O 40c140125练习检测练习检测320.p.or.o.p.o.p四、点和圆的位置关系四、点和圆的位置关系Opr 点点p在在 o内内Op=r 点点p在在 o上上Opr 点点p在在 o外外 不在同一直线上的三个点确定一个圆不在同一直线上的三个点确定一个圆(这个三角形叫做圆的内接三角形,这个圆叫做三角(这个三
8、角形叫做圆的内接三角形,这个圆叫做三角形的外接圆,圆心叫做三角形的外心)形的外接圆,圆心叫做三角形的外心)圆内接四边形的性质:圆内接四边形的性质:(1)对角互补;对角互补;(2)任意一个外角都等于它的内任意一个外角都等于它的内对角对角反证法的三个步骤:反证法的三个步骤:1、提出假设、提出假设2、由题设出发,引出矛盾、由题设出发,引出矛盾3、由矛盾判定假设不成立,肯定结论正确、由矛盾判定假设不成立,肯定结论正确1、O的半径为的半径为R,圆心到点,圆心到点A的距离为的距离为d,且,且R、d分分别是方程别是方程x6x80的两根,则点的两根,则点A与与 O的位置关系是的位置关系是()A点点A在在 O内
9、部内部 B点点A在在 O上上C点点A在在 O外部外部 D点点A不在不在 O上上2、M是是 O内一点,已知过点内一点,已知过点M的的 O最长的弦为最长的弦为10 cm,最短的弦长为,最短的弦长为8 cm,则,则OM=_ cm.3、圆内接四边形、圆内接四边形ABCD中,中,A B C D可以可以是(是()A、1 2 3 4 B、1 3 2 4 C、4 2 3 1 D、4 2 1 32D3D练习检测练习检测1 1、直线和圆相交、直线和圆相交nd d r;r;nd d r;r;2 2、直线和圆相切、直线和圆相切3 3、直线和圆相离、直线和圆相离nd d r.r.五五.直线与圆的位置关系直线与圆的位置关
10、系OO相交相交O相切相切相离相离rrrddd切线的判定定理切线的判定定理定理定理 经过半径的外端经过半径的外端,并且垂直于这条半径并且垂直于这条半径 的直线的直线是圆的切线是圆的切线.CDOA如图如图OAOA是是OO的的半径半径,且且CDOACDOA,CDCD是是OO的切线的切线.切线的判定定理的两种应用切线的判定定理的两种应用1、如果已知直线与圆有交点,往往、如果已知直线与圆有交点,往往要要作出过这一点的半径作出过这一点的半径,再证明直线垂直再证明直线垂直于这条半径即可;于这条半径即可;2、如果不明确直线与圆的交点,往往、如果不明确直线与圆的交点,往往要要作出圆心到直线的垂线段作出圆心到直线
11、的垂线段,再证明这条再证明这条垂线段等于半径即可垂线段等于半径即可1、两个同心圆的半径分别为、两个同心圆的半径分别为3 cm和和4 cm,大圆的,大圆的弦弦BC与小圆相切,则与小圆相切,则BC=_ cm;2、如图、如图2,在以,在以O为圆心的两个同心圆为圆心的两个同心圆中,大圆的弦中,大圆的弦AB是小圆的切线,是小圆的切线,P为切点,为切点,设设AB=12,则两圆构成圆环面积为,则两圆构成圆环面积为_;3、下列四个命题中正确的是(、下列四个命题中正确的是()与圆有公共点的直线是该圆的切线与圆有公共点的直线是该圆的切线;垂直于圆的垂直于圆的半径的直线是该圆的切线半径的直线是该圆的切线;到圆心的距
12、离等于半径到圆心的距离等于半径的直线是该圆的切线的直线是该圆的切线 ;过圆直径的端点,垂直于此过圆直径的端点,垂直于此直径的直线是该圆的切线直径的直线是该圆的切线A.B.C.D.A B P O 练习检测练习检测交点个数交点个数 名称名称0外离外离1外切外切2相交相交1内切内切0内含内含同心圆是内含的特殊情况同心圆是内含的特殊情况d,R,r 的关系的关系dR rd R+rd=R+rR-r d R+rd=R-rd R-r六六.圆与圆的位置关系圆与圆的位置关系ABCO七七.三角形的外接圆和内切圆:三角形的外接圆和内切圆:ABCI三角形内切圆的圆心叫三角形的三角形内切圆的圆心叫三角形的内心内心三角形外
13、接圆的圆心叫三角形的三角形外接圆的圆心叫三角形的外心外心本质本质 性质性质三角形的外三角形的外心心三角形的内三角形的内心心三角形三边垂直平分线的交点三角形三边垂直平分线的交点三角形三内角角平分线的交点三角形三内角角平分线的交点到三角形各边的到三角形各边的距离相等距离相等到三角形各顶点到三角形各顶点的距离相等的距离相等锐角三角形的外心位于三角形锐角三角形的外心位于三角形内内,直角三角形的外心位于直角三角形直角三角形的外心位于直角三角形斜边中点斜边中点,钝角三角形的外心位于三角形钝角三角形的外心位于三角形外外.ABCOABCCABOO三角形的外心三角形的外心是否一定在三角形的内部?是否一定在三角形
14、的内部?n从圆外一点向圆所引的两条切线长从圆外一点向圆所引的两条切线长相等相等;并且这一点和圆心的连线平分并且这一点和圆心的连线平分两条切线的夹角两条切线的夹角.ABPO12ABCODEFABCOODEF切线长定理及其推论切线长定理及其推论:n直角三角形的内切圆直角三角形的内切圆半径与三边关系半径与三边关系.n三角形的内切圆半径与圆面积三角形的内切圆半径与圆面积.PA,PB切切 O于于A,B PA=PB 1=22cbarcbarS211、直角三角形的两条直角边分别是、直角三角形的两条直角边分别是5cm和和12cm,则它的外接圆则它的外接圆 半径半径,内切圆半径,内切圆半径;2、等边三角形外接圆
15、半径与内切圆半径之比为、等边三角形外接圆半径与内切圆半径之比为 6.5cm2cm2:13、一个三角形、一个三角形,它的周长为它的周长为30cm,它的内切圆半它的内切圆半径为径为2cm,则这个三角形的面积为则这个三角形的面积为_30练习检测练习检测弧长的计算公式为:弧长的计算公式为:=180rnl 扇形的面积公式为:扇形的面积公式为:S=3602rn弧弧长长与与扇扇形形面面积积lrS21圆圆锥锥的的侧侧面面积积 和和全全面面积积OPABrhl222rhlrlrSrlS2全侧1 1、扇形、扇形AOBAOB的半径为的半径为12cm,AOB=12012cm,AOB=120,求求ABAB的长、扇形的面积
16、及周长的长、扇形的面积及周长.2 2、如图、如图,当半径为当半径为30cm30cm的转动轮的转动轮转过转过120120时时,传送带上的物体传送带上的物体A A平移平移的距离为的距离为_._.A练习检测练习检测 小雨准备自己动手用纸板制作圆锥形的生日礼帽小雨准备自己动手用纸板制作圆锥形的生日礼帽,如图如图,圆锥帽底面半径为圆锥帽底面半径为9cm,9cm,母线长为母线长为36cm,36cm,请你帮助她请你帮助她计算制作一个这样的生日礼帽需要纸板的面积为多少?计算制作一个这样的生日礼帽需要纸板的面积为多少?|-36cm-|9cm.练习检测练习检测点击中考点击中考(2016巴中)巴中)点击中考点击中考(2016枣庄)枣庄)点击中考点击中考(2016巴中)巴中)
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。