ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:503.75KB ,
文档编号:3719024      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3719024.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(二元函数微积分偏导数和全微分课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

二元函数微积分偏导数和全微分课件.ppt

1、推广推广一元函数微分学一元函数微分学 二元函数微分学二元函数微分学 注意注意:善于类比善于类比,区别异同区别异同二元函数微积分二元函数微积分 一、区域一、区域二、二元函数的概念二、二元函数的概念二元函数的基本概念二元函数的基本概念 区域区域平面上满足某个条件的一切点构平面上满足某个条件的一切点构成的集合。成的集合。平面点集:平面点集:平面区域:平面区域:由平面上一条或几条曲线所围成由平面上一条或几条曲线所围成的部分平面点集称为平面区域,的部分平面点集称为平面区域,通常记作通常记作D。0 xy1边界边界闭区域闭区域开区域开区域0 xy)(1xy)(2xyab0 xycd)(1yx)(2yxX型区

2、域Y型区域常见区域ax bx)(1xy)(2xy由四条曲线围成cy dy 由四条曲线围成)(1yx)(2yx邻域邻域:0 xy1),(000yxP二元函数的概念二元函数的概念一元函数一元函数二元函数二元函数定义域定义域自变量个数自变量个数一个:一个:x两个:两个:yx,在数轴上讨论在数轴上讨论(区间)(区间)在平面上讨论在平面上讨论(区域)(区域)一、一、偏导数概念及其计算偏导数概念及其计算二二、高阶偏导数、高阶偏导数 偏导数),(yxfz 在点),(),(lim000yfyfx存在,xyxyxfz对在点),(),(00的偏导数,记为;),(00yxxz),(00yx的某邻域内;),(00yx

3、xfxx00 x则称此极限为函数极限设函数x),(;),(00100yxfyxfx;),(00yxxzxyxfyxxfx),(),(lim000000),(dd0 xxyxfx),(00yxfx注意注意:0),(dd0yyyxfy lim0y),(00yxfy若函数 z=f(x,y)在域 D 内每一点(x,y)处对 x,xzxfxz则该偏导数称为偏导函数,也简称为偏导数偏导数,),(,),(1yxfyxfx),(,),(2yxfyxfy),(0 xf),(0 xfy记为yy00y或 y 偏导数存在,yzyfyz),(zyxfx例如例如,三元函数三元函数 u=f(x,y,z)在点在点(x,y,z

4、)处对处对 x 的的 lim0 x),(zyf),(zyfxxx?),(zyxfy?),(zyxfzx偏导数定义为(请自己写出)223yyxxz解:解:xz)2,1(xz在点(1,2)处的偏导数.,32yxyzyx23,82312)2,1(yz72213 由偏导数的定义可以看出,要求二元函数对某个自变量的偏导数,只需将另一个自变量看做常量,然后利用一元函数求导公式和求导法则即可。,)且1,0(xxxzyzyzxxzyx2ln1 证证:xzyzxxzyxln1 例例3.求222zyxr的偏导数.解解:xryryyxx yz求证,1yxyxxylnz22222zyxx2rxrzzr,ry偏导数记号

5、是一个求证:1pTTVVpTRVp证证:,VTRp,pTRV,RVpT pTTVVp说明说明:(R 为常数),Vp2VTRTVpRpTRVVpTR1不能看作分子与分母的商!此例表明,整体记号,练练 习习设 z=f(x,y)在域 D 内存在连续的偏导数),(,),(yxfyzyxfxzyx若这两个偏导数仍存在偏导数,若这两个偏导数仍存在偏导数,)(xz)(yzx)(xzy),()(22yxfyzyzyyy则称它们是则称它们是z=f(x,y)的的二阶偏导数二阶偏导数.按求导顺序不同按求导顺序不同,有下列四个二阶偏导有下列四个二阶偏导22xz);,(yxfxxyxz2),(yxfyx);,(2yxf

6、xyzxyx数:例如,例如,z=f(x,y)关于 x 的三阶偏导数为3322)(xzxzxz=f(x,y)关于 x 的 n 1 阶偏导数,再关于 y 的一阶)(yyxznn1偏导数为11nnxz解:解:yxxyxeyxexz)(yxyyxeyxeyz)()(22xzxxz)(2xzyyxz)(2yzxxyz)(22yzyyzyxxyxeyxe)(yxyyxeyxe)(yxxyxeyxe)(yxyyxeyxe)(222,1zyxrru满足拉普拉斯0222222zuyuxu证:证:xu22xu利用对称性,有,3152322ryryu222222zuyuxuu方程xrr21rxr2131rxrrx4352331rxr5232231rzrzu52223)(33rzyxr2r01.偏导数的概念及有关结论 定义;记号2.偏导数的计算方法 求一点处偏导数的方法先求后代(把其他变量视为常数)利用定义 求高阶偏导数的方法逐次求导法练练 习习

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|