1、18.2.2 菱 形第十八章 平行四边形导入新课讲授新课当堂练习课堂小结第1课时 菱形的性质学习目标1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)导入新课导入新课情景引入欣赏下面图片,图片中框出的图形是你熟悉的吗?平行四边形矩形 前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.有一个角是直角讲授新课讲授新课菱形的性质一思考 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?平
2、行四边形 定义:有一组邻边相等的平行四边形.菱形邻边相等菱形是特殊的平行四边形.平行四边形不一定是菱形.归纳总结 活动2 在自己剪出的菱形上画出两条折痕,折叠手中 的图形(如图),并回答以下问题:问题1 菱形是轴对称图形吗?如果是,指出它的对称轴.是,两条对角线所在直线都是它的对称轴.问题2 根据上面折叠过程,猜想菱形的四边在数量上 有什么关系?菱形的两对角线有什么关系?猜想1 菱形的四条边都相等.猜想2 菱形的两条对角线互相垂直,并且每一条对 角线平分一组对角.菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.边:四条边都相等.对角
3、线:互相垂直,且每条对角线平分一组对角.角:对角相等.边:对边平行且相等.对角线:相互平分.菱形的特殊性质平行四边形的性质归纳总结1.如图,在菱形ABCD中,已知A60,AB 5,则ABD的周长是 ()A.10 B.12 C.15 D.20C练一练2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_.第1题图第2题图6cm例1 如图,在菱形ABCD中,对角线AC、BD相交于点O,BD12cm,AC6cm,求菱形的周长解:四边形ABCD是菱形,ACBD,AO AC,BO BD.AC6cm,BD12cm,AO3cm,BO6cm.在RtAB
4、O中,由勾股定理得菱形的周长4AB43 12 (cm)12122222363 5 cm.ABAOBO55典例精析菱形的面积二问题1 菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形ABCD的面积吗?ABCD思考 前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢?能.过点A作AEBC于点E,则S菱形ABCD=底高 =BCAE.E问题2 如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.ABCDO解:四边形ABCD是菱形,ACBD,S菱形ABCD=SABC+SADC=ACBO+ACDO=AC(BO+DO)=A
5、CBD.12121212你有什么发现?菱形的面积=底高=对角线乘积的一半 菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半归纳14练一练如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm B1.菱形具有而一般平行四边形不具有的性质是()A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等C2.如图,在菱形ABCD中,AC=8,BD=6,则ABD的周长等于 ()A.18 B.16 C.15
6、 D.14 当堂练习当堂练习B3.根据下图填一填:(1)已知菱形ABCD的周长是12cm,那么它的边长 是 _.(2)在菱形ABCD中,ABC120,则BAC _.(3)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的边长是_.3cm30ABCOD5cm(4)菱形的一个内角为120,平分这个内角的对角 线长为11cm,菱形的周长为_.44cm(5)菱形的面积为64cm2,两条对角线的比为 1 2 ,那么菱形最短的那条对角线长为_.8cm2ABCOD课堂小结课堂小结菱形的性质菱形的性质有关计算边1.周长=边长的四倍2.面积=底高=两条对角线乘积的一半角对角线1.两组对边平行且相等;2.四条边相等两组对角分别相等,邻角互补邻角互补1.两条对角线互相垂直平分;2.每一条对角线平分一组对角作业:课本P50-61-62:5、11两题。课后作业课后作业