ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:1.45MB ,
文档编号:3761691      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3761691.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(Texture-Synthesis-by-Non-parametric-Sampling:通过非参数化采样的纹理合成-课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

Texture-Synthesis-by-Non-parametric-Sampling:通过非参数化采样的纹理合成-课件.ppt

1、Alexei Efros and Thomas LeungUC Berkeley Given a finite sample of some texture,the goal is to synthesize other samples from that same texture.The sample needs to be large enoughTrue(infinite)textureSYNTHESISgenerated imageinput image Texture analysis:how to capture the essence of texture?Need to mod

2、el the whole spectrum:from repeated to stochastic texture This problem is at intersection of vision,graphics,statistics,and image compressionrepeatedstochasticBoth?multi-scale filter response histogram matching Heeger and Bergen,95 sampling from conditional distribution over multiple scales DeBonet,

3、97 filter histograms with Gibbs sampling Zhu et al,98 matching 1st and 2nd order properties of wavelet coefficients Simoncelli and Portilla,98 N-gram language model Shannon,48 clustering pixel neighbourhood densities Popat and Picard,93 Our goals:preserve local structure model wide range of real tex

4、tures ability to do constrained synthesis Our method:Texture is“grown”one pixel at a time conditional pdf of pixel given its neighbors synthesized thus far is computed directly from the sample image Shannon,48 proposed a way to generate English-looking text using N-grams:Assume a generalized Markov

5、model Use a large text to compute probability distributions of each letter given N-1 previous letters precompute or sample randomly Starting from a seed repeatedly sample this Markov chain to generate new letters One can use whole words instead of letters too:WE NEED TO EAT CAKE Results(using alt.si

6、ngles corpus):“As Ive commented before,really relating to someone involves standing next to impossible.”One morning I shot an elephant in my arms and kissed him.”I spent an interesting evening recently with a grain of salt Notice how well local structure is preserved!Now lets try this in 2D.Infinite

7、 sample imageGenerated image Assuming Markov property,what is conditional probability distribution of p,given the neighbourhood window?Instead of constructing a model,lets directly search the input image for all such neighbourhoods to produce a histogram for p To synthesize p,just pick one match at

8、randomSAMPLEpfinite sample imageGenerated imagep However,since our sample image is finite,an exact neighbourhood match might not be present So we find the best match using SSD error(weighted by a Gaussian to emphasize local structure),and take all samples within some distance from that matchSAMPLE S

9、tarting from the initial configuration,we “grow”the texture one pixel at a time The size of the neighbourhood window is a parameter that specifies how stochastic the user believes this texture to be To grow from scratch,we use a random 3x3 patch from input image as seed Growing is in“onion skin”orde

10、r Within each“layer”,pixels with most neighbors are synthesized first If no close match can be found,the pixel is not synthesized until the end Using Gaussian-weighted SSD is very important to make sure the new pixel agrees with its closest neighbors Approximates reduction to a smaller neighborhood

11、window if data is too sparseIncreasing window sizealuminum wirereptile skinfrench canvasrafia weavewoodgranitewhite breadbrick wallDeBonet,97Our approachSimple tilingSynthetic tilabletextureGrowing garbage Verbatim copying Occlusion fill-in for 3D reconstruction region-based image and video compress

12、ion a small sample of textured region is stored Texturing non-developable objects growing texture directly on surface Motion synthesis2D3DSample image Advantages:conceptually simple models a wide range of real-world textures naturally does hole-filling Disadvantages:its greedy its slow its a heuristic Not an answer to texture analysis,but hopefully some inspiration!Thanks to:Alex Berg Elizaveta Levina Jitendra Malik Yair Weiss Funding agencies NSF Graduate Fellowship Berkeley Fellowship ONR MURI California MIRCOAlexei Efros and Thomas LeungUC Berkeley

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|