ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:305.65KB ,
文档编号:3762507      下载积分:5.98 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3762507.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2019年普通高等学校招生全国统一考试数学(浙江卷).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2019年普通高等学校招生全国统一考试数学(浙江卷).docx

1、绝密 启用前2019年普通高等学校招生全国统一考试数学(浙江卷)选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019浙江,1)已知全集U=-1,0,1,2,3,集合A=0,1,2,B=-1,0,1,则(UA)B=()A.-1B.0,1C.-1,2,3D.-1,0,1,3解析UA=-1,3,则(UA)B=-1.答案A2.(2019浙江,2)渐近线方程为xy=0的双曲线的离心率是()A.22B.1C.2D.2解析因为双曲线的渐近线方程为xy=0,所以a=b=1.所以c=a2+b2=2,双曲线的率心率e=ca=2

2、.答案C3.(2019浙江,3)若实数x,y满足约束条件x-3y+40,3x-y-40,x+y0,则z=3x+2y的最大值是()A.-1B.1C.10D.12解析在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当直线z=3x+2y经过平面区域内的点(2,2)时,z=3x+2y取得最大值zmax=32+22=10.答案C4.(2019浙江,4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的

3、三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324解析由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+623+4+6236=162.答案B5.(2019浙江,5)设a0,b0,则“a+b4”是“ab4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当a0,b0时,a+b2ab,若a+b4,则2aba+b4,所以ab4,充分性成立;当a=1,b=4时,满足ab4,但此时a+b=54,必要性

4、不成立.综上所述,“a+b4”是“ab4”的充分不必要条件.答案A6.(2019浙江,6)在同一直角坐标系中,函数y=1ax,y=logax+12(a0,且a1)的图象可能是()解析当0a1时,函数y=ax的图象过定点(0,1)且单调递增,则函数y=1ax的图象过定点(0,1)且单调递减,函数y=logax+12的图象过定点12,0且单调递增,各选项均不符合.故选D.答案D7.(2019浙江,7)设0a1.随机变量X的分布列是X0a1P131313则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大解析由分布列得E(X)=1+a3,则

5、D(X)=1+a3-0213+1+a3-a213+1+a3-1213=29a-122+16,所以当a在(0,1)内增大时,D(X)先减小后增大.答案D8.(2019浙江,8)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为,直线PB与平面ABC所成的角为,二面角P-AC-B的平面角为,则()A.,B.,C.,D.,解析如图G为AC中点,点V在底面ABC上的投影为点O,则点P在底面ABC上的投影点D在线段AO上,过点D作DE垂直AE,易得PEVG,过点P作PFAC交VG于点F,过点D作DHAC,交BG于点H,则=BPF,=PBD,=P

6、ED,所以cos =PFPB=EGPB=DHPB,因为tan =PDEDPDBD=tan ,所以.故选B.答案B9.(2019浙江,9)设a,bR,函数f(x)=x,x0,13x3-12(a+1)x2+ax,x0.若函数y=f(x)-ax-b恰有3个零点,则()A.a-1,b0B.a0C.a-1,b-1,b0解析当x0时,由x=ax+b,得x=b1-a,最多一个零点取决于x=b1-a与0的大小,所以关键研究当x0时,方程13x3-12(a+1)x2+ax=ax+b的解的个数,令b=13x3-12(a+1)x2=13x2x-32(a+1)=g(x).画出三次函数g(x)的图象如图所示,可以发现分

7、类讨论的依据是32(a+1)与0的大小关系.若32(a+1)0,即a0,即a-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b0时g(x)与y=b可以有两个交点,且此时要求x=b1-a0,故-1a1,b10B.当b=14时,a1010C.当b=-2时,a1010D.当b=-4时,a1010解析当b=12时,a2=a12+1212,a3=a22+1234,a4=a32+1217161,当n4时,an+1=an2+12an21,则log1716an+12log1716anlog1716an+12n-1,则an+117162n-1(n4),则a10171626=1+11664=1

8、+6416+646321162+1+4+710,故选A.答案A非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2019浙江,11)复数z=11+i(i为虚数单位),则|z|=.解析|z|=1|1+i|=12=22.答案2212.(2019浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=,r=.解析由题意知kAC=-12AC:y+1=-12(x+2),把(0,m)代入得m=-2,此时r=|AC|=4+1=5.答案-2513.(2019浙江,13)在二项式(2+x)9的展开式

9、中,常数项是,系数为有理数的项的个数是.解析(2+x)9的通项为Tr+1=C9r(2)9-rxr(r=0,1,2,9),可得常数项为T1=C90(2)9=162.因为系数为有理数,所以r=1,3,5,7,9,即T2,T4,T6,T8,T10的系数为有理数,共5个.答案162514.(2019浙江,14)在ABC中,ABC=90,AB=4,BC=3,点D在线段AC上.若BDC=45,则BD=,cosABD=.解析如图所示,设CD=x,DBC=,则AD=5-x,ABD=2-,在BDC中,由正弦定理得3sin4=xsin=32sin =x32.在ABD中,由正弦定理得5-xsin(2-)=4sin3

10、4=42cos =5-x42.由sin2+cos2=x218+(5-x)232=1,解得x1=-35(舍去),x2=215BD=1225.在ABD中,由正弦定理得0.8sinABD=4sin(-4)sinABD=210cosABD=7210.答案1225721015.(2019浙江,15)已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.解析如图,设PF的中点为M,椭圆的右焦点为F1.由题意可知|OF|=|OM|=c=2,由中位线定理可得|PF1|=2|OM|=4,设P(x,y)可得(x-2)2+y2

11、=16,与椭圆方程x29+y25=1联立,解得x=-32,x=212(舍),因为点P在椭圆上且在x轴的上方,所以P-32,152,所以kPF=15212=15.答案1516.(2019浙江,16)已知aR,函数f(x)=ax3-x.若存在tR,使得|f(t+2)-f(t)|23,则实数a的最大值是.解析由题意知,|f(t+2)-f(t)|=|a(6t2+12t+8)-2|23有解,即-23a(6t2+12t+8)-223有解,所以43(6t2+12t+8)a83(6t2+12t+8)有解,因为6t2+12t+82,+),所以43(6t2+12t+8)0,23,83(6t2+12t+8)0,43

12、,所以只需要0a43,即amax=43.答案4317.(2019浙江,17)已知正方形ABCD的边长为1.当每个i(i=1,2,3,4,5,6)取遍1时,|1AB+2BC+3CD+4DA+5AC+6BD|的最小值是,最大值是.解析(基向量处理)1AB+2BC+3CD+4DA+5AC+6BD=(1-3+5-6)AB+(2-4+5+6)AD,要使|1AB+2BC+3CD+4DA+5AC+6BD|的最小,只需要|1-3+5-6|=|2-4+5+6|=0,此时只需要取1=1,2=-1,3=1,4=1,5=1,6=1,此时|1AB+2BC+3CD+4DA+5AC+6BD|min=0,由于5AC+6BD=

13、2AB或2AD,取其中的一种5AC+6BD=2AB讨论(其他三种类同),此时1AB+2BC+3CD+4DA+5AC+6BD=(1-3+2)AB+(2-4)AD,要使|1AB+2BC+3CD+4DA+5AC+6BD|的最大,只需要使|1-3+2|,|2-4|最大,取1=1,2=1,3=-1,4=-1,此时|1AB+2BC+3CD+4DA+5AC+6BD|=|4AB+2AD|=25,综合几种情况可得|1AB+2BC+3CD+4DA+5AC+6BD|max=25.答案025三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)(2019浙江,18)设函

14、数f(x)=sin x,xR.(1)已知0,2),函数f(x+)是偶函数,求的值;(2)求函数y=fx+122+fx+42的值域.解(1)因为f(x+)=sin(x+)是偶函数,所以,对任意实数x都有sin(x+)=sin(-x+),即sin xcos +cos xsin =-sin xcos +cos xsin ,故2sin xcos =0,所以cos =0.又0,2),因此=2或32.(2)y=fx+122+fx+42=sin2x+12+sin2x+4=1-cos(2x+6)2+1-cos(2x+2)2=1-1232cos 2x-32sin 2x=1-32cos2x+3.因此,函数的值域是

15、1-32,1+32.点评本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.19.(本题满分15分)(2019浙江,19)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1平面ABC,ABC=90,BAC=30,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EFBC;(2)求直线EF与平面A1BC所成角的余弦值.解方法一:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABC=AC,所以,A1E平面ABC,则A1EBC.又因为A1FAB,ABC=90,故BCA

16、1F.所以BC平面A1EF.因此EFBC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E平面ABC,故A1EEG,所以平行四边形EGFA1为矩形.由(1)得BC平面EGFA1,则平面A1BC平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在RtA1EG中,A1E=23,EG=3.由于O为A1G的中点,故EO=OG=A1G2=152,所以cosEOG=EO2+OG2-EG22EOOG=35.因此,直线EF与平面A1BC所成角的余弦值是35.方法二:(1)连接A1E

17、,因为A1A=A1C,E是AC的中点,所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABC=AC,所以,A1E平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A1(0,0,23),B(3,1,0),B1(3,3,23),F32,32,23,C(0,2,0).因此,EF=32,32,23,BC=(-3,1,0).由EFBC=0得EFBC.(2)设直线EF与平面A1BC所成角为.由(1)可得BC=(-3,1,0),A1C=(0.2,-23).设平面A1BC的法向量为n=(x,y,z

18、).由BCn=0,A1Cn=0,得-3x+y=0,y-3z=0.取n=(1,3,1),故sin =|cos|=|EFn|EF|n|=45.因此,直线EF与平面A1BC所成的角的余弦值为35.点评本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.20.(本题满分15分)(2019浙江,20)设等差数列an的前n项和为Sn,a3=4,a4=S3.数列bn满足:对每个nN*,Sn+bn,Sn+1+bn,Sn+2+bn成等比数列.(1)求数列an,bn的通项公式;(2)记cn=an2bn,nN*,证明:c1+c2+cn2n,nN*.解(1)设数列an

19、的公差为d,由题意得a1+2d=4,a1+3d=3a1+3d,解得a1=0,d=2.从而an=2n-2,nN*.所以Sn=n2-n,nN*.由Sn+bn,Sn+1+bn,Sn+2+bn成等比数列得(Sn+1+bn)2=(Sn+bn)(Sn+2+bn).解得bn=1d(Sn+12-SnSn+2).所以bn=n2+n,nN*.(2)cn=an2bn=2n-22n(n+1)=n-1n(n+1),nN*.我们用数学归纳法证明.当n=1时,c1=02,不等式成立;假设n=k(kN*)时不等式成立,即c1+c2+ck2k.那么,当n=k+1时,c1+c2+ck+ck+12k+k(k+1)(k+2)2k+1

20、k+12k+2k+1+k=2k+2(k+1-k)=2k+1,即当n=k+1时不等式也成立.根据和,不等式c1+c2+cn0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记AFG,CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求S1S2的最小值及此时点G的坐标.解(1)由题意得p2=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(xA,yA),B(xB,yB),C(xC,yC),重心G(xG,yG).令yA=2t,t0,则xA=t2.由于直线AB过F,故直线AB方程为x=t2-1

21、2ty+1,代入y2=4x,得y2-2(t2-1)ty-4=0,故2tyB=-4,即yB=-2t,所以B1t2,-2t.又由于xG=13(xA+xB+xC),yG=13(yA+yB+yC)及重心G在x轴上,故2t-2t+yC=0,得C1t-t2,21t-t,G2t4-2t2+23t2,0.所以,直线AC方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t22.从而S1S2=12|FG|yA|12|QG|yC|=2t4-2t2+23t2-1|2t|t2-1-2t4-2t2+23t22t-2t=2t4-t2t4-1=2-t2-2t4-1.令m=t2-2,则m0,S1S

22、2=2-mm2+4m+3=2-1m+3m+42-12m3m+4=1+32.当m=3时,S1S2取得最小值1+32,此时G(2,0).点评本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.22.(本题满分15分)(2019浙江,22)已知实数a0,设函数f(x)=aln x+1+x,x0.(1)当a=-34时,求函数f(x)的单调区间;(2)对任意x1e2,+均有f(x)x2a,求a的取值范围.注:e=2.718 28为自然对数的底数.解(1)当a=-34时,f(x)=-34ln x+1+x,x0.f(x)=-34x+121+x=(1+x-2)(21+x+1)4x1+x,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+).(2)由f(1)12a,得0a24.当00,故q(x)在1e2,17上单调递增,所以q(x)q17.由得,q17=-277p17-277p(1)=0.所以,q(x)0.由知对任意x1e2,+,t22,+),g(t)0,即对任意x1e2,+,均有f(x)x2a.综上所述,所求a的取值范围是0,24.点评本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|