ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:252.91KB ,
文档编号:3762511      下载积分:5.98 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3762511.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ).docx

1、2019年普通高等学校招生全国统一考试数学(全国卷,理)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2019全国,理1)已知集合M=x|-4x2,N=x|x2-x-60,则MN=() A.x|-4x3B.x|-4x-2C.x|-2x2D.x|2x3解析由题意得N=x|-2x3,则MN=x|-2x2,故选C.答案C2.(2019全国,理2)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=1解析设z=x+yi(x,

2、yR).因为z-i=x+(y-1)i,所以|z-i|=x2+(y-1)2=1,则x2+(y-1)2=1.故选C.答案C3.(2019全国,理3)已知a=log20.2,b=20.2,c=0.20.3,则()A.abcB.acbC.cabD.bca解析因为a=log20.220=1,又0c=0.20.30.201,所以ac1,f()=-1+20,排除B,C.故选D.答案D6.(2019全国,理6)我国古代典籍周易用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132

3、C.2132D.1116解析由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C63种情况,所以该重卦恰有3个阳爻的概率为C6326=516,故选A.答案A7.(2019全国,理7)已知非零向量a,b满足|a|=2|b|,且(a-b)b,则a与b的夹角为()A.6B.3C.23D.56解析因为(a-b)b,所以(a-b)b=ab-b2=0,所以ab=b2.所以cos=ab|a|b|=|b|22|b|2=12,所以a与b的夹角为3,故选B.答案B8.(2019全国,理8)右图是求12+12+12的程序框图,图中空白框中应填入()A.A=12+AB.A=2+1AC

4、.A=11+2AD.A=1+12A解析执行第1次,A=12,k=12,是,第一次应该计算A=12+12=12+A,k=k+1=2;执行第2次,k=22,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=32,否,输出,故循环体为A=12+A,故选A.答案A9.(2019全国,理9)记Sn为等差数列an的前n项和.已知S4=0,a5=5,则()A.an=2n-5B.an=3n-10C.Sn=2n2-8nD.Sn=12n2-2n解析由题意可知,S4=4a1+432d=0,a5=a1+4d=5,解得a1=-3,d=2.故an=2n-5,Sn=n2-4n,故选A.答案A

5、10.(2019全国,理10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.x22+y2=1B.x23+y22=1C.x24+y23=1D.x25+y24=1解析如图,由已知可设|F2B|=n,|BF1|=m.由|AB|=|BF1|,则|AF2|=m-n,|AB|=m.又|AF1|+|AF2|=|BF1|+|BF2|,故|AF1|=2n.由椭圆的定义及|AF2|=2|F2B|,得m-n=2n,m+n=2a,解得m=3a2,n=a2.|AF1|=a,|AF2|=a.点A为(0,-b).kA

6、F2=b1=b.过点B作x轴的垂线,垂足为点P.由题意可知OAF2PBF2.又|AF2|=2|F2B|,|OF2|=2|F2P|.|F2P|=12.又kAF2=|BP|F2P|=|BP|12=b,|BP|=12b.点B32,12b.把点B坐标代入椭圆方程x2a2+y2b2=1中,得a2=3.又c=1,故b2=2.所以椭圆方程为x23+y22=1.答案B11.(2019全国,理11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:f(x)是偶函数f(x)在区间2,内单调递增f(x)在-,有4个零点f(x)的最大值为2其中所有正确结论的编号是()A.B.C.D.解析因为函数f(x)的

7、定义域为R,关于原点对称,且f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故正确;当2x0,b0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若F1A=AB,F1BF2B=0,则C的离心率为.解析如图,由F1A=AB,得|F1A|=|AB|.又|OF1|=|OF2|,得BF2OA,且|BF2|=2|OA|.由F1BF2B=0,得F1BF2B.则OAF1A,|OB|=|OF1|=|OF2|.故BOF2=AOF1=2OF1B,得BOF2=60.则ba=tan 60=3.所以e=ca=1+ba2=1+3

8、=2.答案2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)(2019全国,理17)ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C.(1)求A;(2)若2a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin Bsin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0A180,所以A=60.(2)由(1)知

9、B=120-C,由题设及正弦定理得2sin A+sin(120-C)=2sin C,即62+32cos C+12sin C=2sin C,可得cos(C+60)=-22.由于0C120,所以sin(C+60)=22,故sin C=sin(C+60-60)=sin(C+60)cos 60-cos(C+60)sin 60=6+24.18.(12分)(2019全国,理18)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN平面C1DE;(2)求二面角A-MA1-N的正弦值.解(1)连接B1C,ME.因

10、为M,E分别为BB1,BC的中点,所以MEB1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1􀱀DC,可得B1C􀱀A1D,故ME􀱀ND,因此四边形MNDE为平行四边形,MNED.又MN平面EDC1,所以MN平面C1DE.(2)由已知可得DEDA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,3,2),N(1,0,2),A1A=(0,0,-4),A1M=(-1,3,-2),A1N=(-1,0,-2),MN=(0,-3,0).

11、设m=(x,y,z)为平面A1MA的法向量,则mA1M=0,mA1A=0.所以-x+3y-2z=0,-4z=0.可取m=(3,1,0).设n=(p,q,r)为平面A1MN的法向量,则nMN=0,nA1N=0.所以-3q=0,-p-2r=0.可取n=(2,0,-1).于是cos=mn|m|n|=2325=155,所以二面角A-MA1-N的正弦值为105.19.(12分)(2019全国,理19)已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若AP=3PB,求|AB|.解设直线l:y=32x+t,A(x1

12、,y1),B(x2,y2).(1)由题设得F34,0,故|AF|+|BF|=x1+x2+32,由题设可得x1+x2=52.由y=32x+t,y2=3x可得9x2+12(t-1)x+4t2=0,则x1+x2=-12(t-1)9.从而-12(t-1)9=52,得t=-78.所以l的方程为y=32x-78.(2)由AP=3PB可得y1=-3y2.由y=32x+t,y2=3x可得y2-2y+2t=0.所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.代入C的方程得x1=3,x2=13.故|AB|=4133.20.(12分)(2019全国,理20)已知函数f(x)=sin x-ln(1

13、+x),f(x)为f(x)的导数.证明:(1)f(x)在区间-1,2存在唯一极大值点;(2)f(x)有且仅有2个零点.解(1)设g(x)=f(x),则g(x)=cos x-11+x,g(x)=-sin x+1(1+x)2.当x-1,2时,g(x)单调递减,而g(0)0,g20;当x,2时,g(x)0.所以g(x)在区间(-1,)内单调递增,在区间,2内单调递减,故g(x)在区间-1,2内存在唯一极大值点,即f(x)在区间-1,2内存在唯一极大值点.(2)f(x)的定义域为(-1,+).()当x(-1,0时,由(1)知,f(x)在区间(-1,0)内单调递增,而f(0)=0,所以当x(-1,0)时

14、,f(x)0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,从而x=0是f(x)在区间(-1,0上的唯一零点.()当x0,2时,由(1)知,f(x)在区间(0,)内单调递增,在区间,2内单调递减,而f(0)=0,f20;当x,2时,f(x)0,所以当x0,2时,f(x)0.从而,f(x)在区间0,2上没有零点.()当x2,时,f(x)0,f()1,所以f(x)0,从而f(x)在区间(,+)内没有零点.综上,f(x)有且仅有2个零点.21.(12分)(2019全国,理21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对

15、药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,8)表示“甲药的累计得分为i时,最终认为甲药比

16、乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设=0.5,=0.8.()证明:pi+1-pi(i=0,1,2,7)为等比数列;()求p4,并根据p4的值解释这种试验方案的合理性.解(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-),P(X=0)=+(1-)(1-),P(X=1)=(1-).所以X的分布列为X-101P(1-)+(1-)(1-)(1-)(2)()由(1)得a=0.4,b=0.5,c=0.1.因此pi=0.4pi-1+0.5pi+0.1pi+1,故0.1(p

17、i+1-pi)=0.4(pi-pi-1),即pi+1-pi=4(pi-pi-1).又因为p1-p0=p10,所以pi+1-pi(i=0,1,2,7)为公比为4,首项为p1的等比数列.()由()可得p8=p8-p7+p7-p6+p1-p0+p0=(p8-p7)+(p7-p6)+(p1-p0)=48-13p1.由于p8=1,故p1=348-1,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=44-13p1=1257.p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=12570.003 9,此时得出

18、错误结论的概率非常小,说明这种试验方案合理.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.(10分)(2019全国,理22)选修44:坐标系与参数方程在直角坐标系xOy中,曲线C的参数方程为x=1-t21+t2,y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos +3sin +11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-11-t21+t21,且x2+y22=1-t21+t22+4t2(1+t2)2=1,所以C的直角坐标方程为x2+y24=

19、1(x-1).l的直角坐标方程为2x+3y+11=0.(2)由(1)可设C的参数方程为x=cos,y=2sin(为参数,-).C上的点到l的距离为|2cos+23sin+11|7=4cos-3+117.当=-23时,4cos-3+11取得最小值7,故C上的点到l距离的最小值为7.23.(10分)(2019全国,理23)选修45:不等式选讲已知a,b,c为正数,且满足abc=1.证明:(1)1a+1b+1ca2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)324.解(1)因为a2+b22ab,b2+c22bc,c2+a22ac,又abc=1,故有a2+b2+c2ab+bc+ca=ab+bc+caabc=1a+1b+1c.所以1a+1b+1ca2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)333(a+b)3(b+c)3(a+c)3=3(a+b)(b+c)(a+c)3(2ab)(2bc)(2ac)=24.所以(a+b)3+(b+c)3+(c+a)324.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|