ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:1.74MB ,
文档编号:3796192      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3796192.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文((日本东北大学固体物理学课件)Types-of-solids.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

(日本东北大学固体物理学课件)Types-of-solids.ppt

1、Solid state physics(SAITO)1Solid state physicsTohoku UniversityRiichiro Saito Solid state physics(SAITO)2Types of solids4Crystal Translational symmetry4Amorphous Disordered structures4Quasicrystal Ordered structure No translation symmetryparacrystal(Al,Pd,Mn alloy)crystal(oxide super conductor)Amorp

2、hous material(example:ceramics)Multicrystal,surface,and particleSolid state physics(SAITO)3Solid state physics?4Properties of existing materials Understand experimental results Give direction to the experiment 4Predict by calculation Non-existing material Create interesting theories Study difficult

3、conditions High pressure,high temperature,rapid coolingSolid state physics(SAITO)61.Review of vibration-Harmonic oscillations-Particles placed periodically-“wave number”and“density of state”Solid state physics(SAITO)7Review of vibration4Oscillation of one particle Equation of motionKxxm2 Initial con

4、dition0)0(xInherent oscillationmKtAx2,sinxSolid state physics(SAITO)8Solution of one particle vibration4Simple harmonic motion(inherent oscillation)Forces of two springs operating in phaseKxxm2 Normal modemKtAx2,sin0)0(xtxxSolid state physics(SAITO)9Two particle vibration4Applying symmetry()+()and()

5、-()(What symmetry?)and()is invariant under translating Simultaneous differential equation)(2111xxKKxxm 211xxX)(1222xxKKxxm 212xxX1x1x2x2x()()()Solid state physics(SAITO)10Solution of two particle oscillationAdd each side of()substract each side of()Two degree of freedomTwo normal modesSimultaneous d

6、ifferential equations)(2111xxKKxxm)(1222xxKKxxm)()(2121xxKxxm )(3)(2121xxKxxm 11KXXm 223KXXm mK1mK321x2x()Solid state physics(SAITO)11Normal modesCenter of spring doesnt stretch or shrinkCenter of spring shrinks twice as long as others“acoustic”“optical”11KXXm 1x223KXXm mK1mK311x2x2xSolid state phys

7、ics(SAITO)12N-1 particles vibrationDefine walls as fixed particles-equivalent equations(Here we assume to take only real part of )Use)()(11 xxKxxKxm)1,1(n00nxx2x1x0 xnx1nx)(tkaiAex,2 xxxexika1xSolid state physics(SAITO)13Solution(1)dispersion relation:dispersion relation)(Re)(tkaiAex2x1x0 xnx1nx)()(

8、11 xxKxxKxmxeKxeKxmikaika)1()1(2)cos1(22kaKm2sin42kaK)(k2sin2)(kamKk Solid state physics(SAITO)14Solution(2)wave vectorBoundary conditionapply atdegrees of freedom?(Corresponding to translational motion)2x1x0 xnx1nx)(Re)(tkaiAex00nxx0t,0Re0AxibA n0p)1,2,1,0(,npnpka0)sin()Re(nkabibexinkan)1(,2,0nnka2

9、sin2)(kamKk mKk2)(kaexceptSolid state physics(SAITO)15Check!(1)In the case of(2)In the case of 11n2sin2)(kamKk)1,2,1,0(,npnpka2x1x0 xnx1nx21n2kamKk2)(32,3kamKmKk3,)(1x2x1xSolid state physics(SAITO)16Wave number and wavelength4 discrete,periodicIn the case ofOne state for everyInvariant for)1,2,1(,np

10、npka0t)(Re)(tkaiAex)sin(kab21n32,3kaaak32,62nakakk21x1x2x2xa6a3kSolid state physics(SAITO)17Density of states(One state for everystates betweenstates between)Flat dispersionDivergence()ddNnak2sin2)(kamKk kakamKk2)(,nadkdNdkkkdNdknadNdNdddkdkdNddN2cos1kamKnmKnddNSolid state physics(SAITO)18Actual lat

11、tice vibration4Longitudinal wave oscillation in the z(direction)4Transverse wave 2 in x and y direction43N eigen-values(:atom number)yzxyxzlongitudinaltransversalIn the case of molecules:eigenvalues translation degrees+rotation degrees=6Solid state physics(SAITO)19Summary of N-1 atoms4Solution of 4W

12、ave number k has equal distance4Wave number k:periodicity4Dispersion relation 4Density of statesSimilar to electronic states of solids)(Re)(tkaiAexakk2nak2sin2)(kamKk ddNSolid state physics(SAITO)20Problems for“review of oscillation”42N-1 particles(mass:m,M)are placed alternately 4Two springs(spring

13、 constant:K,K )are placed alternately4Transverse wave is represented by other spring constant4More than three kinds of particles are placed periodically4Springs are placed in two or three dimension4Springs are placed except square shape at the previous problemDerive the dispersion relation and density of states in following cases.Use the same conditions as in this class.12

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|