1、医学影像成像原理简医学影像成像原理简介介1 X线成像原理线成像原理X线的本质:电磁辐射线的本质:电磁辐射常用常用X线诊断设备:线诊断设备:X线机、数字线机、数字X线摄影设备线摄影设备(DSA、CR、DR)和)和X线计算机断层扫描设备线计算机断层扫描设备(X线线CT)等。)等。1.1 X线的特征线的特征1.2 X射线成像原理射线成像原理1.3 计算机计算机X线摄影(线摄影(CR)1.4 直接数字化直接数字化X线摄影系统(线摄影系统(DR)2医学影像成像原理简介3.1.1 X线的特征线的特征3医学影像成像原理简介3.1.1 X线的特征线的特征X射线在电磁辐射中的特点属于射线在电磁辐射中的特点属于高
2、频率、波长短高频率、波长短的射线的射线X射线的频率约在射线的频率约在3101631020 Hz之间,之间,波长约在波长约在1010-3nm之间之间 X线诊断常用的线诊断常用的X线波长范围为线波长范围为0.0080.031nm 4医学影像成像原理简介3.1.1 X线的特征线的特征1.X射线的波粒二象性射线的波粒二象性X射线同时具有波动性和微粒性,统称为波粒二象射线同时具有波动性和微粒性,统称为波粒二象性性 。X射线在传播时,它的波动性占主导地位,具有频射线在传播时,它的波动性占主导地位,具有频率和波长,且有干涉、衍射、偏振、反射、折射等率和波长,且有干涉、衍射、偏振、反射、折射等现象发生。现象发
3、生。X射线在与物质相互作用时,它的粒子特性占主导射线在与物质相互作用时,它的粒子特性占主导地位,具有质量、能量和动量。地位,具有质量、能量和动量。5医学影像成像原理简介3.1.1 X线的特征线的特征2.X射线与物质间的相互作用射线与物质间的相互作用(6点点)(1)X射线的穿透作用。射线的穿透作用。其贯穿本领的强弱与物质的性质有关其贯穿本领的强弱与物质的性质有关 6医学影像成像原理简介3.1.1 X线的特征线的特征2.X射线与物质间的相互作用射线与物质间的相互作用(2)X射线的荧光作用。射线的荧光作用。X射线是肉眼看不见的,但当它照射某些物质时,如磷、铂氰射线是肉眼看不见的,但当它照射某些物质时
4、,如磷、铂氰化钡、硫化锌、钨酸钙等,能够化钡、硫化锌、钨酸钙等,能够使这些物质的原子处于激发态,当它使这些物质的原子处于激发态,当它们回到基态时就能够发出荧光们回到基态时就能够发出荧光,这类物质称荧光物质。,这类物质称荧光物质。医学中透视用的荧光屏、医学中透视用的荧光屏、X射线摄影用的增感屏、影像增强器射线摄影用的增感屏、影像增强器中的输入屏和输出屏都是利用荧光特性做成的。中的输入屏和输出屏都是利用荧光特性做成的。(3)X射线的电离作用。射线的电离作用。X射线虽然不带电,但具有足够能量的射线虽然不带电,但具有足够能量的X光子能够撞击原子中光子能够撞击原子中轨道电子,使之脱离原子产生一次电离。轨
5、道电子,使之脱离原子产生一次电离。电离作用也是电离作用也是X射线损伤和治疗的基础。射线损伤和治疗的基础。7医学影像成像原理简介3.1.1 X线的特征线的特征2.X射线与物质间的相互作用射线与物质间的相互作用(4)X射线的热作用。射线的热作用。X射线被物质吸收,绝大部分最终都将变为热能,使物体温升。射线被物质吸收,绝大部分最终都将变为热能,使物体温升。(5)X射线的化学效应射线的化学效应(感光作用和着色作用感光作用和着色作用)。X射线能使多种物质发生光化学反应。例如,射线能使多种物质发生光化学反应。例如,X射线能使照相射线能使照相底片感光。底片感光。(6)X射线的生物效应。射线的生物效应。生物组
6、织经一定量的生物组织经一定量的X射线照射,会产生电离和激发,使细胞受射线照射,会产生电离和激发,使细胞受到损伤、抑制、死亡或通过遗传变异影响下一代,这种现象称为到损伤、抑制、死亡或通过遗传变异影响下一代,这种现象称为X射射线的生物效应。这个特性可充分应用在肿瘤放射治疗中。线的生物效应。这个特性可充分应用在肿瘤放射治疗中。8医学影像成像原理简介3.1.2 X射线成像原理射线成像原理当高速带电粒子撞击物质受阻而突然减速时,能够产生当高速带电粒子撞击物质受阻而突然减速时,能够产生X 射线。医学影像诊断所用的射线。医学影像诊断所用的X线产生设备是线产生设备是X线管(线管(X-ray tube,球管)。
7、,球管)。1X射线的产生射线的产生X射线的产生需要的基本条件射线的产生需要的基本条件是:是:(1)有高速运动的电子流有高速运动的电子流;(2)有阻碍带电粒子流运动的障碍物有阻碍带电粒子流运动的障碍物(靶),用来阻止(靶),用来阻止电子的运动,可以将电子的动能转变为电子的运动,可以将电子的动能转变为X射线光子的能量。射线光子的能量。9医学影像成像原理简介3.1.2 X射线成像原理射线成像原理X射线的产生装置射线的产生装置主要包括三部分:主要包括三部分:X射线管射线管、高压电源高压电源及及低压电源低压电源,如图,如图3.2所示。所示。10医学影像成像原理简介3.1.2 X射线成像原理射线成像原理2
8、.X射线人体成像射线人体成像使用使用X射线对人体进行照射,并对透过人体的射线对人体进行照射,并对透过人体的X射线信息射线信息进行采集、转换,并使之成为可见的影像,即为进行采集、转换,并使之成为可见的影像,即为X射线人射线人体成像。体成像。(1)X射线影像的形成射线影像的形成 当一束强度大致均匀的当一束强度大致均匀的X射线投照到人体上时,射线投照到人体上时,X 射线一射线一部分被吸收和散射部分被吸收和散射,另一部分透过人体沿原方向传播另一部分透过人体沿原方向传播。由。由于人体各种组织、器官在密度、厚度等方面存在差异,对于人体各种组织、器官在密度、厚度等方面存在差异,对投照在其上的投照在其上的X射
9、线的吸收量各不相同,从而使透过人体射线的吸收量各不相同,从而使透过人体的的X射线强度分布发生变化并携带人体信息,最终形成射线强度分布发生变化并携带人体信息,最终形成X射线信息影像。射线信息影像。X射线信息影像不能为人眼识别,须通过射线信息影像不能为人眼识别,须通过一定的采集、转换、显示系统将一定的采集、转换、显示系统将X射线强度分布转换成可射线强度分布转换成可见光的强度分布,形成人眼可见的见光的强度分布,形成人眼可见的X 射线影像。射线影像。11医学影像成像原理简介3.1.2 X射线成像原理射线成像原理 人体不同厚度组织与人体不同厚度组织与X线成像的关系线成像的关系 密度和厚度的差别是产生影像
10、对比的基础,是密度和厚度的差别是产生影像对比的基础,是X线成像的基本条件线成像的基本条件12医学影像成像原理简介3.1.2 X射线成像原理射线成像原理2.X射线人体成像射线人体成像(2)X射线的采集与显示射线的采集与显示 医用医用X 射线胶片与增感屏射线胶片与增感屏 医用医用X射线胶片的主要特性是感光,即接受光照并产生化射线胶片的主要特性是感光,即接受光照并产生化学反应,形成潜影(学反应,形成潜影(latent image)。)。经过对有潜影的胶片处理(暗室处理:显影、定影等)。使胶片上的经过对有潜影的胶片处理(暗室处理:显影、定影等)。使胶片上的潜影转变为可见的不同灰度(潜影转变为可见的不同
11、灰度(gray)分布像。)分布像。胶片感光层中的胶片感光层中的卤化银卤化银还原成金属银残留在胶片上,形成由金属银颗还原成金属银残留在胶片上,形成由金属银颗粒组成的黑色影像。人体组织的物质密度高,则吸收粒组成的黑色影像。人体组织的物质密度高,则吸收X射线多,在射线多,在X射线照片上呈白影;反之,如果组织的物质密度低,则吸收射线照片上呈白影;反之,如果组织的物质密度低,则吸收X射线少,射线少,在在X射线照片上呈黑影。射线照片上呈黑影。13医学影像成像原理简介3.1.2 X射线成像原理射线成像原理2.X射线人体成像射线人体成像(2)X射线的采集与显示射线的采集与显示 医用医用X 射线胶片与增感屏射线
12、胶片与增感屏 医用医用X射线射线增感屏增感屏为荧光增感屏,其为荧光增感屏,其增感原理为增感屏上的荧光物质增感原理为增感屏上的荧光物质受到受到X射线激发后,发出易被胶片所接收的荧光,从而增强对射线激发后,发出易被胶片所接收的荧光,从而增强对X 射线射线胶片的感光作用。胶片的感光作用。主要目的是:在实际主要目的是:在实际X 射线摄影中,仅有不到射线摄影中,仅有不到10%的的X射线光子能直射线光子能直接被胶片吸收形成潜影,绝大部分接被胶片吸收形成潜影,绝大部分X射线光子穿透胶片,得不到有效射线光子穿透胶片,得不到有效的利用。因此需要利用一种增感方法来增加的利用。因此需要利用一种增感方法来增加X射线对
13、胶片的曝光,以射线对胶片的曝光,以缩短摄影时间,降低缩短摄影时间,降低X射线的辐射剂量。常采用的增感措施是射线的辐射剂量。常采用的增感措施是在暗盒在暗盒中将胶片夹在两片增感屏(中将胶片夹在两片增感屏(intensifying screen)之间)之间,然后进行,然后进行曝光。曝光。14医学影像成像原理简介3.1.2 X射线成像原理射线成像原理2.X射线人体成像射线人体成像(2)X射线的采集与显示射线的采集与显示 X射线电视系统射线电视系统X射线电视系统主要包括射线电视系统主要包括X射线影像增强器、光学图像分射线影像增强器、光学图像分配系统、含有摄像机与监视器的闭路视频系统与辅助电子配系统、含有
14、摄像机与监视器的闭路视频系统与辅助电子设备。设备。X射线影像增强管射线影像增强管是影像增强器的核心部件。是影像增强器的核心部件。15医学影像成像原理简介3.1.3 计算机计算机X线摄影(线摄影(CR)计算机计算机X线摄影线摄影(Computed Radiography,CR)是将是将X线透过人体后的信息记录在成像板(线透过人体后的信息记录在成像板(Image Plate,IP)上,经读取装置读取后,由计算机以数字化图像信息)上,经读取装置读取后,由计算机以数字化图像信息的形式储存,再经过数字的形式储存,再经过数字/模拟(模拟(D/A)转换器将数字化)转换器将数字化信息转换成图像的组织密度(灰度
15、)信息,最后在荧光屏信息转换成图像的组织密度(灰度)信息,最后在荧光屏上显示。其中,上显示。其中,成像板是成像板是CR 成像技术的关键成像技术的关键。16医学影像成像原理简介3.1.3 计算机计算机X线摄影(线摄影(CR)1.成像板(成像板(IP)成像板(成像板(IP)是使用一种含有微量素铕()是使用一种含有微量素铕(Eu2+)的)的钡氟钡氟溴溴化合物结晶制作而成能够采集(记录)影像信息的载体,化合物结晶制作而成能够采集(记录)影像信息的载体,可以代替可以代替X线胶片并重复使用线胶片并重复使用2-3万次。万次。当透过人体的当透过人体的X线照射到线照射到IP板上时可以使板上时可以使IP板感光并形
16、成板感光并形成潜影以记录潜影以记录X线影像信息。线影像信息。成像板的构造:成像板的构造:(1)表面保护层。)表面保护层。(2)辉尽性荧光体层。)辉尽性荧光体层。(3)基板(支持体)。)基板(支持体)。(4)背面保护层。)背面保护层。17医学影像成像原理简介3.1.3 计算机计算机X线摄影(线摄影(CR)2.CR 系统成像的基本过程系统成像的基本过程(1)影像信息的采集:)影像信息的采集:(2)影像信息的读取:)影像信息的读取:与普通与普通X摄影相比较,摄影相比较,CR的优点是:的优点是:宽容度大,摄影宽容度大,摄影条件易选择。条件易选择。可降低投照辐射量:可降低投照辐射量:CR可在可在IP获取
17、信息获取信息的基础上自动调节放大增益,最大幅度地减少的基础上自动调节放大增益,最大幅度地减少X线曝光量,线曝光量,降低病人的辐射损伤。降低病人的辐射损伤。影像清晰度较普通片高。影像清晰度较普通片高。对对影像可进行后处理,对曝光不足或过度的胶片可进行后期影像可进行后处理,对曝光不足或过度的胶片可进行后期补救。补救。可进行图像传输、存储。由于激光扫描仪可可进行图像传输、存储。由于激光扫描仪可以对以对IP上的残留信号进行消影处理,上的残留信号进行消影处理,IP板可重复使用板可重复使用2-3万次。万次。18医学影像成像原理简介3.1.4 直接数字化直接数字化X线摄影系统(线摄影系统(DR)直接数字化直
18、接数字化X射线摄影射线摄影(Digital Radiography,DR)是在具有图像处理功能的计算机控制下,采用一维或二维是在具有图像处理功能的计算机控制下,采用一维或二维的的X射线探测器射线探测器直接把直接把X射线信息影像转化为数字图像信射线信息影像转化为数字图像信息的技术息的技术。当前当前DR设备主要采用二维平板设备主要采用二维平板X射线探测器(射线探测器(flat panel detector,FPD),包括:,包括:(1)非晶态硅平板探测器)非晶态硅平板探测器 先经闪烁发光晶体转换成可见光,再转换为数字先经闪烁发光晶体转换成可见光,再转换为数字信号信号(2)非晶态硒平板探测器)非晶态
19、硒平板探测器 将将X线直接转换成数字信号线直接转换成数字信号19医学影像成像原理简介3.1.4 直接数字化直接数字化X线摄影系统(线摄影系统(DR)(3)DR与与CR成像技术的比较成像技术的比较 20医学影像成像原理简介3.2 X-CT成像原理成像原理 X-CT与与X射线摄影相比较有很大区别,射线摄影相比较有很大区别,X射线摄影产生射线摄影产生的是多器官重叠的平片图像的是多器官重叠的平片图像 CT是用是用X射线对人体层面进行扫描,取得信息,经计算射线对人体层面进行扫描,取得信息,经计算机处理而获得重建图像,显示的是断面解剖图像,其密度机处理而获得重建图像,显示的是断面解剖图像,其密度分辨力明显
20、优于分辨力明显优于X线图像,可以显著的扩大人体的检查范线图像,可以显著的扩大人体的检查范围,提高病变的检出率和诊断的准确率围,提高病变的检出率和诊断的准确率X射线平片与CT断层对比图 21医学影像成像原理简介2.1.X-CT成像技术 X-CT(X-ray computed tomography,X-CT)是运用扫描)是运用扫描并采集投影的物理技术,以测定并采集投影的物理技术,以测定 X 射线在人体内的衰减射线在人体内的衰减系数为基础,采用一定算法,经计算机运算处理,系数为基础,采用一定算法,经计算机运算处理,求解出求解出人体组织的衰减系数值在某剖面上的二维分布矩阵,再将人体组织的衰减系数值在某
21、剖面上的二维分布矩阵,再将其转为图像上的灰度分布其转为图像上的灰度分布,从而实现建立断层解剖图像的,从而实现建立断层解剖图像的现代医学成像技术,现代医学成像技术,X-CT成像的本质是衰减系数成像。成像的本质是衰减系数成像。22医学影像成像原理简介3.2.1.X-CT成像技术1.X-CT成像装置与流程成像装置与流程X-CT成像装置主要由成像装置主要由X线管线管、准直器准直器、检测器检测器、扫扫描机构描机构,测量电路测量电路、电子计算机电子计算机、监视器监视器等部分所等部分所组成的。组成的。X-CT成像流程是:成像流程是:X线线-准直器(准直器(可以大幅度地减少可以大幅度地减少散射线的干扰散射线的
22、干扰,并可决定扫描层的厚度并可决定扫描层的厚度)-检测器检测器-转转变电信号变电信号-放大电信号放大电信号-转变为数字信号转变为数字信号-计算计算机系统机系统-存入计算机的存贮器存入计算机的存贮器-编码编码-显示图像显示图像23医学影像成像原理简介3.2.1.X-CT成像技术2.X-CT成像的数据采集与处理成像的数据采集与处理X-CT成像的数据采集是利用成像的数据采集是利用X线管和检测器等的同步扫描来线管和检测器等的同步扫描来完成的。检测器是一种完成的。检测器是一种X线光子转换为电流信号的换能器。线光子转换为电流信号的换能器。X-CT成像的数据采集根据成像的数据采集根据X-CT成像的物理原理进
23、行的。成像的物理原理进行的。X线管发出直线波束 24医学影像成像原理简介3.2.2 X-CT 的扫描方式 CT的各种扫描方式中,的各种扫描方式中,单束平移单束平移-旋转方式旋转方式、窄扇形束扫描平移窄扇形束扫描平移-旋转方式旋转方式、旋转旋转-旋转方式旋转方式、静止静止-旋转方式旋转方式的共同点是都需要的共同点是都需要X射线管和检射线管和检测器之间进行同步扫描机械运动。为满足人体测器之间进行同步扫描机械运动。为满足人体动态器官的检查,需要进一步提高扫描的速度,动态器官的检查,需要进一步提高扫描的速度,在静止在静止-旋转扫描模式基础上发展出来的旋转扫描模式基础上发展出来的电子束电子束扫描方式扫描
24、方式,没有机械运动,大大地提高了扫描,没有机械运动,大大地提高了扫描速度速度。25医学影像成像原理简介2.2 X-CT 的扫描方式1.单束平移单束平移-旋转(旋转(T/R)方式)方式单束扫描是由一个单束扫描是由一个X射线管和一个检射线管和一个检测器组成,测器组成,X射线束被准直成笔直单射线束被准直成笔直单射线束形式射线束形式,X射线管和检测器围绕射线管和检测器围绕受检体作同步平移受检体作同步平移-旋转扫描运动。这旋转扫描运动。这种扫描首先进行同步平移直线扫描。种扫描首先进行同步平移直线扫描。当平移扫完一个指定断层后,同步扫当平移扫完一个指定断层后,同步扫描系统转过一个角度(一般为描系统转过一个
25、角度(一般为1)后)后再对同一指定断层进行平移同步扫描,再对同一指定断层进行平移同步扫描,如此进行下去,直到扫描系统旋转到如此进行下去,直到扫描系统旋转到与初始值位置成与初始值位置成 180角为止,这就角为止,这就是平移旋转扫描方式是平移旋转扫描方式 单束平移-旋转方式 26医学影像成像原理简介2.2 X-CT 的扫描方式1.单束平移单束平移-旋转(旋转(T/R)方式)方式这种扫描方式的缺点这种扫描方式的缺点:射线利用率极低,扫描速度很慢射线利用率极低,扫描速度很慢,对一个断层扫描约需对一个断层扫描约需 5分钟时分钟时 间,只适用于无体动器官的扫描。间,只适用于无体动器官的扫描。单束平移-旋转
26、方式 27医学影像成像原理简介2.2 X-CT 的扫描方式2.窄扇形束扫描平移窄扇形束扫描平移-旋转旋转(T/R)方式方式 窄扇形束扫描称为第二代窄扇形束扫描称为第二代CT扫描。扫描。扫描装置由一个扫描装置由一个X射线管和射线管和630个的个的检测器组构成同步扫描系统。扫描时,检测器组构成同步扫描系统。扫描时,X射线管发出角度为射线管发出角度为320的窄扇的窄扇形射线束,形射线束,630个检测器同时采样,个检测器同时采样,并采用平移并采用平移-旋转扫描方式旋转扫描方式 。窄扇形束扫描平移-旋转方式 28医学影像成像原理简介2.2 X-CT 的扫描方式2.窄扇形束扫描平移窄扇形束扫描平移-旋转(
27、旋转(T/R)方式方式这种扫描的主要缺点是:这种扫描的主要缺点是:由于检测器排由于检测器排列成直线,对于列成直线,对于X射线管发出的扇形束射线管发出的扇形束来说,来说,扇形束的中心射束和边缘射束的扇形束的中心射束和边缘射束的测量值不相等,需校正测量值不相等,需校正,否则扫描会因,否则扫描会因这种运动而这种运动而出现运动伪影出现运动伪影,影响,影响CT图图像的质量。像的质量。窄扇形束扫描平移-旋转方式 29医学影像成像原理简介2.2 X-CT 的扫描方式3.旋转旋转-旋转(旋转(R/R)方式)方式 这种扫描称为第三代这种扫描称为第三代CT扫描,扫描装置由一个扫描,扫描装置由一个X射线管和由射线管
28、和由250700个检测器(或用检测器阵列)排列成一个可在扫描个检测器(或用检测器阵列)排列成一个可在扫描架内滑动的紧密圆弧形。架内滑动的紧密圆弧形。X射线管发出张角为射线管发出张角为3045,能覆盖整个受检体的宽扇形射线束。能覆盖整个受检体的宽扇形射线束。由于这种宽扇束扫描一次由于这种宽扇束扫描一次即能覆盖整个受检体,故即能覆盖整个受检体,故只需只需X射线管和检测器作射线管和检测器作同步旋转运动。同步旋转运动。旋转-旋转扫描方式 30医学影像成像原理简介2.2 X-CT 的扫描方式3.旋转旋转-旋转(旋转(R/R)方式)方式 这种扫描的缺点是:这种扫描的缺点是:要要对每个相邻检测器的接收灵对每
29、个相邻检测器的接收灵敏度差异进行校正敏度差异进行校正,否则由于同步旋转扫描运动会,否则由于同步旋转扫描运动会产生环形伪像。产生环形伪像。旋转-旋转扫描方式 31医学影像成像原理简介2.2 X-CT 的扫描方式4.静止静止-旋转(旋转(S/R)方式)方式这种扫描称为第四代这种扫描称为第四代CT扫描方式,扫描装置由一个扫描方式,扫描装置由一个 X射线管射线管和和 6002000个检测器所组成。在静止个检测器所组成。在静止-旋转扫描方式中,每个旋转扫描方式中,每个检测器得到的投影值,相当于以该检测器为焦点,由检测器得到的投影值,相当于以该检测器为焦点,由 X射线射线管旋转扫描一个扇形面而获得。管旋转
30、扫描一个扇形面而获得。静止静止-旋转扫描方式的优点是:旋转扫描方式的优点是:每一个检测器上获得多个方每一个检测器上获得多个方向的投影数据,能很好地克向的投影数据,能很好地克服宽扇形束的旋转服宽扇形束的旋转-旋转扫描旋转扫描方式中由于检测器之间差异方式中由于检测器之间差异所带来的环形伪影,扫描速所带来的环形伪影,扫描速度与静止度与静止-旋转方式相比也有旋转方式相比也有所提高。所提高。检测器检测器X线管轨迹线管轨迹X线管线管静止-旋转扫描方式 32医学影像成像原理简介3.2.2 X-CT 的扫描方式5.电子束扫描方式电子束扫描方式电子束扫描又称为第五代电子束扫描又称为第五代CT,扫描装置由一个特殊
31、制造的大,扫描装置由一个特殊制造的大型型X射线管和静止排列的检测器环组成。这种机构在射线管和静止排列的检测器环组成。这种机构在50100ms内能完成内能完成 216的局部扫描的局部扫描 。电子束扫描方式 33医学影像成像原理简介3.2.3 螺旋螺旋CT工作原理工作原理 螺旋扫描螺旋扫描是指在扫描期间,是指在扫描期间,X线管连续旋转并产生线管连续旋转并产生X线束,线束,同时扫描床在纵轴方向连续移动同时扫描床在纵轴方向连续移动,这样,扫描区域,这样,扫描区域X线束进线束进行的轨迹相对被检查者而言呈螺旋运动,扫描轨迹为螺旋形行的轨迹相对被检查者而言呈螺旋运动,扫描轨迹为螺旋形曲线,这样可以一次收集到
32、扫描范围内全部容积的数据,所曲线,这样可以一次收集到扫描范围内全部容积的数据,所以也称为螺旋容积扫描。以也称为螺旋容积扫描。螺旋螺旋CT扫描装置包括探测器、扫描装置包括探测器、X线管滑环、机架与检查床、线管滑环、机架与检查床、控制台与计算机。其中控制台与计算机。其中滑环技术是螺旋扫描的基础滑环技术是螺旋扫描的基础,螺旋扫,螺旋扫描是通过滑环技术与扫描床的连续移动相结合而实现的。描是通过滑环技术与扫描床的连续移动相结合而实现的。34医学影像成像原理简介3.2.3 螺旋螺旋CT工作原理工作原理多层螺旋多层螺旋CT扫描特点扫描特点 :(1)降低)降低X射线球管损耗。射线球管损耗。(2)扫描覆盖范围更
33、长。)扫描覆盖范围更长。(3)扫描时间更短。)扫描时间更短。(4)扫描层厚更薄。)扫描层厚更薄。35医学影像成像原理简介3.3 MRI成像原理成像原理(magnetic resonance imaging,MRI)是一多种特征参数、多种靶位核素的成像技术。是一多种特征参数、多种靶位核素的成像技术。磁共振成像基本原理磁共振成像基本原理:利用特定频率的电磁波,向在磁场中的人体进行利用特定频率的电磁波,向在磁场中的人体进行照射,人体内各种不同组织的氢核在电磁波的作照射,人体内各种不同组织的氢核在电磁波的作用下会发生核磁共振,并吸收电磁波的能量,随用下会发生核磁共振,并吸收电磁波的能量,随后再发射出电
34、磁波,后再发射出电磁波,MRI系统接收电磁波经过计系统接收电磁波经过计算机处理和图像重建,即可得到人体的断层图像。算机处理和图像重建,即可得到人体的断层图像。36医学影像成像原理简介3.1 磁共振现象磁共振现象 在磁场中旋转的原子核有一个特点,即可以吸收在磁场中旋转的原子核有一个特点,即可以吸收频率与其旋转频率相同的电磁波,使原子核的能频率与其旋转频率相同的电磁波,使原子核的能量增加,当原子核恢复原状时,就会把多余的能量增加,当原子核恢复原状时,就会把多余的能量以电磁波的形式释放出来。这种现象称为量以电磁波的形式释放出来。这种现象称为磁共磁共振现象振现象(magnetic resonance,
35、MR)。37医学影像成像原理简介3.2 磁共振成像的原理磁共振成像的原理 MRI成像方法是将检查层面分成体素信息,用成像方法是将检查层面分成体素信息,用接收器收集信息,数字化后输入计算机处理,接收器收集信息,数字化后输入计算机处理,同时获得每个体素的同时获得每个体素的T1(纵向弛豫时间,指高能态的核将纵向弛豫时间,指高能态的核将其能量转移到周围分子而转变成热运动,从而恢复到低能态的过程所需其能量转移到周围分子而转变成热运动,从而恢复到低能态的过程所需要的时间要的时间)值与)值与T2(横向弛豫时间,通过相邻的同种核之间的能横向弛豫时间,通过相邻的同种核之间的能量交换来实现,反映横向磁化衰减、丧失
36、的过程所需要的时间量交换来实现,反映横向磁化衰减、丧失的过程所需要的时间)值,)值,用转换器将每个用转换器将每个T值转为模拟灰度,而重建图值转为模拟灰度,而重建图像。当像。当MRI应用于人体成像时,由于人体各组应用于人体成像时,由于人体各组织与器官的织与器官的T值不同,从而形成不同的影像。值不同,从而形成不同的影像。38医学影像成像原理简介3.2 磁共振成像的原理磁共振成像的原理MRI成像的指导思想成像的指导思想是用磁场值来标定受检体是用磁场值来标定受检体共振核的空间位置。共振核的空间位置。(1)层面的选择)层面的选择 将待测物体置于一均匀磁将待测物体置于一均匀磁场场B0中,设磁场方向是中,设
37、磁场方向是Z轴方轴方向,在均匀磁场的基础上,再向,在均匀磁场的基础上,再叠加一相同方向的线性梯度场叠加一相同方向的线性梯度场GZ使磁感应强度沿使磁感应强度沿Z轴方向轴方向由小到大均匀改变由小到大均匀改变。层面的选择 39医学影像成像原理简介3.2 磁共振成像的原理磁共振成像的原理(2)编码)编码 编码是将研究的编码是将研究的物体断物体断层分为若干个体素,对每个体层分为若干个体素,对每个体素标定一个记号素标定一个记号,常用,常用nz ny nx来标定层面每个体素的标号。来标定层面每个体素的标号。经过选片后取出层面的若干个经过选片后取出层面的若干个体素,由于整个层面处于相同体素,由于整个层面处于相
38、同的磁场中,故每个体素中的磁的磁场中,故每个体素中的磁矩在磁场中旋进的频率和相位矩在磁场中旋进的频率和相位均相同。均相同。目前目前MRI使用的是频率与相位使用的是频率与相位二种编码方法。二种编码方法。选片后层面的若干个体素 40医学影像成像原理简介3.2 磁共振成像的原理磁共振成像的原理(3)图像重建)图像重建 经过选片、相位编码和频率编码,可以对整个层面经过选片、相位编码和频率编码,可以对整个层面的体素进行标定。由于观测层面中的磁矩是在的体素进行标定。由于观测层面中的磁矩是在RF脉冲激励脉冲激励下旋进,因此停止下旋进,因此停止RF脉冲照射时,各体素的磁矩在回到平脉冲照射时,各体素的磁矩在回到
39、平衡态的过程中,磁矩的方向发生变化,在接收线圈中可以衡态的过程中,磁矩的方向发生变化,在接收线圈中可以感应出这种由于磁矩取向变化所产生的信号。这种感应信感应出这种由于磁矩取向变化所产生的信号。这种感应信号是各个体素带有相位和频率特征的号是各个体素带有相位和频率特征的MR信号的总和。为信号的总和。为取得层面各体素取得层面各体素MR信号的大小,需要根据信号所携带的信号的大小,需要根据信号所携带的相位编码和频率编码的特征,把各体素的信号分离出来,相位编码和频率编码的特征,把各体素的信号分离出来,这一过程称为解码,由计算机完成。这一过程称为解码,由计算机完成。41医学影像成像原理简介3.2 磁共振成像
40、的原理磁共振成像的原理2.人体的磁共振成像人体的磁共振成像氢核氢核是人体是人体MRI的首选核种。的首选核种。(人体内水分子中的氢原子可人体内水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构息,从而精确绘制人体内部结构)除了氢核密度可以作为成像特征信息外,人体不同组除了氢核密度可以作为成像特征信息外,人体不同组织的织的T1、T2值值也可以提供诊断依据。也可以提供诊断依据。人体组织的人体组织的MR信号强度取决于该组织中的氢核密度信号强度取决于该组织中的氢核密度及其氢核周围的环境。及
41、其氢核周围的环境。T1、T2反映了氢核周围环境的信息。换句话说,反映了氢核周围环境的信息。换句话说,人体人体不同组织之间、正常组织与该组织中的病变组织之间氢核不同组织之间、正常组织与该组织中的病变组织之间氢核密度密度、T1和和T2三个参数的差异及变化三个参数的差异及变化,是,是MRI用于临床用于临床诊断最主要的物理学依据。诊断最主要的物理学依据。42医学影像成像原理简介3.3磁共振成像系统磁共振成像系统 磁共振成像系统主要由磁共振成像系统主要由磁场系统磁场系统、射频系统射频系统、图像重建图像重建系统系统三大部分组成。三大部分组成。1.磁场系统磁场系统(1)静磁场。)静磁场。(2)梯度磁场。)梯
42、度磁场。(3)场强与精度。)场强与精度。2.射频系统射频系统(1)射频发生器。)射频发生器。(2)射频接收器。)射频接收器。43医学影像成像原理简介3.4 超声波成像原理超声波成像原理产生超声波有两个必要条件产生超声波有两个必要条件:一是要有:一是要有高频声高频声源源,二是要有,二是要有传播超声的介质传播超声的介质。在固体中,超声振。在固体中,超声振动可以以纵波的形式传播,也可以以横波的形式传动可以以纵波的形式传播,也可以以横波的形式传播;但在气体和液体中,因为介质没有切变弹性,播;但在气体和液体中,因为介质没有切变弹性,超声只能以纵波的形式传播。由于这种特性,超声超声只能以纵波的形式传播。由
43、于这种特性,超声波在不同介质中传播时会产生波形的转换。波在不同介质中传播时会产生波形的转换。44医学影像成像原理简介3.4 超声波成像原理超声波成像原理 医学上应用的超声成像是靠反射或散射回波来运医学上应用的超声成像是靠反射或散射回波来运载生物信息的。超声回波运载信息主要包括三个方载生物信息的。超声回波运载信息主要包括三个方面:面:大界面造成的反射波大界面造成的反射波小粒子所引起的散射波小粒子所引起的散射波生物组织对声能吸收所导致的回波幅值衰减生物组织对声能吸收所导致的回波幅值衰减 45医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.1 超声波的特性超声波的特性超声波的传播特性超声
44、波的传播特性(1)方向性好。)方向性好。(2)强度高。)强度高。(3)对液体和固体的穿透力强。)对液体和固体的穿透力强。(4)反射与折射。)反射与折射。(5)衍射与散射。)衍射与散射。(6)声波衰减。)声波衰减。(7)超声多普勒效应。)超声多普勒效应。衍射与散射示意图 反射与折射示意图 46医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.1 超声波的特性超声波的特性2超声波与物质作用的特性超声波与物质作用的特性(1)热作用机制)热作用机制被组织吸收的超声波对分子产生作用会导致两种基被组织吸收的超声波对分子产生作用会导致两种基本的结果:分子振动和转动能量可逆转性增加,本的结果:分子振
45、动和转动能量可逆转性增加,使介质温度上升。分子结构永久性地被改变使介质温度上升。分子结构永久性地被改变。(2)机械作用)机械作用(3)超声空化作用)超声空化作用(4)化学效应)化学效应47医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.2 超声波的产生超声波的产生 常用的超声波检查使用脉冲振荡发射器与超常用的超声波检查使用脉冲振荡发射器与超声回波接收器一体装置。声回波接收器一体装置。1.压电效应压电效应 医用超声波仪器主要采用压电式超声波发生器。医用超声波仪器主要采用压电式超声波发生器。2.超声波对人体的作用超声波对人体的作用 (1)无反射型。)无反射型。(2)少反射型。)少反射型
46、。(3)多反射型。)多反射型。(4)全反射型。)全反射型。48医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.3 超声波成像技术超声波成像技术 超声波探测技术可以分为两大类,即基于超声波探测技术可以分为两大类,即基于回波扫描回波扫描的超声探测技术和基于的超声探测技术和基于多普勒效应多普勒效应的超声探测技术。的超声探测技术。基于回波扫描的超声探测技术主要用于解剖学范基于回波扫描的超声探测技术主要用于解剖学范畴的检测、了解器官的畴的检测、了解器官的组织形态学组织形态学方面的状况和变化。方面的状况和变化。基于多普勒效应的超声探测技术主要用于了解组基于多普勒效应的超声探测技术主要用于了解组
47、织器官的织器官的功能状况和血流动力学功能状况和血流动力学方面的生理病理状况,如方面的生理病理状况,如观测血流状态、心脏的运动状况和血管是否栓塞检查等方观测血流状态、心脏的运动状况和血管是否栓塞检查等方面。面。49医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.3 超声波成像技术超声波成像技术1.脉冲回波检测技术脉冲回波检测技术(1)A 型超声型超声A型显示是最基本的超声显示方式型显示是最基本的超声显示方式A型超声是以波形来显示组织特征的方法,主要用型超声是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病于测量器官的径线,以判定其大小。可用来鉴别病变组织
48、的一些物理特性变组织的一些物理特性A超主要用于颅脑的占位性病变超主要用于颅脑的占位性病变的诊断的诊断51医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.3 超声波成像技术超声波成像技术1.脉冲回波检测技术脉冲回波检测技术(2)M型超声型超声M型超声诊断仪(简称型超声诊断仪(简称M超)又叫超声心动仪之称。超)又叫超声心动仪之称。M型超声是用于型超声是用于观察心脏等活动界面时间变化的一观察心脏等活动界面时间变化的一种方法种方法。52医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.3 超声波成像技术超声波成像技术1.脉冲回波检测技术脉冲回波检测技术(3)B型超声型超声 B型超
49、声诊断仪(简称型超声诊断仪(简称B超)是目前超声图像诊断超)是目前超声图像诊断应用最广泛的机型。应用最广泛的机型。B型超声是型超声是用平面图形的形式来显示被探查组织的用平面图形的形式来显示被探查组织的具体情况具体情况。53医学影像成像原理简介3.4 超声波成像原理超声波成像原理4.3 超声波成像技术超声波成像技术2.多普勒效应的超声探测技术多普勒效应的超声探测技术多普勒效应的超声探测技术是利用运动物体散射或反射声多普勒效应的超声探测技术是利用运动物体散射或反射声波时造成的频率偏移现象来获得人体内部器官如波时造成的频率偏移现象来获得人体内部器官如心脏、血心脏、血液等动态检查信息液等动态检查信息。
50、(1)D型超声型超声 D型超声全名为超声多普勒血流测量技术。型超声全名为超声多普勒血流测量技术。(2)彩色多普勒血流显像仪)彩色多普勒血流显像仪 提取的信号转变为红色、蓝色、绿色的色彩显示。提取的信号转变为红色、蓝色、绿色的色彩显示。彩色多普勒血流显像仪(彩超)能用彩色反映出血流的彩色多普勒血流显像仪(彩超)能用彩色反映出血流的运动状态:红色表示朝向探头的血流,蓝色表示离开探头运动状态:红色表示朝向探头的血流,蓝色表示离开探头的血流,而湍流的程度用绿色成份的多少表示,色彩的亮的血流,而湍流的程度用绿色成份的多少表示,色彩的亮度表示速率大小。度表示速率大小。54医学影像成像原理简介3.4 超声波
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。