1、3.1.1函数的概念(二)学习目标1.会判断两个函数是否为同一个函数.2.能正确使用区间表示数集.3.会求一些简单函数的定义域与函数值一、区间的概念知识梳理设a,bR,且ab,规定如下:区间数轴表示a,b(a,b)a,b)(a,ba,)(a,)(,b(,b)注意点:(1)区间只能表示连续的数集,开闭不能混淆(2)用数轴表示区间时,要特别注意实心点与空心点的区别(3)区间是实数集的一种表示形式,集合的运算仍然成立(4)是一个符号,而不是一个数例1把下列数集用区间表示:(1)x|x1;(2)x|x0;(3)x|1x1;(4)x|0x1或2x4解(1)x|x11,)(2)x|x0(,0)(3)x|1
2、x1(1,1)(4)x|0x1或2x4(0,1)2,4反思感悟用区间表示数集时要注意:(1)区间左端点值小于右端点值(2)区间两端点之间用“,”隔开(3)含端点值的一端用中括号,不含端点值的一端用小括号(4)以“”“”为区间的一端时,这端必须用小括号跟踪训练1(1)集合x|2x2且x0用区间表示为_答案(2,0)(0,2解析x|2x2且x0(2,0)(0,2(2)已知区间(a2a1,7,则实数a的取值范围是_答案(3,2)解析由题意可知a2a17,即a2a60,解得3a0,即x2,所以函数y的定义域为x|x2且x1(3)要使函数有意义,自变量x的取值必须满足解得x5,且x3,所以函数y的定义域
3、为x|x5且x3(4)要使函数有意义,则即解不等式组得1x1.所以函数y的定义域为x|1x1三、判断是否为同一个函数问题1构成函数的要素有哪些?提示定义域、对应关系和值域问题2结合函数的定义,如何才能确定一个函数?提示有确定的定义域和对应关系,则此时值域唯一确定例3下列各组函数:f(x),g(x)x1;f(x),g(x);f(x),g(x);f(x),g(x)x3;汽车匀速运动时,路程与时间的函数关系f(t)80t(0t5)与一次函数g(x)80x(0x5)其中表示同一个函数的是_(填序号)答案解析不是同一个函数,定义域不同,f(x)的定义域为x|x0,g(x)的定义域为R.不是同一个函数,对
4、应关系不同,f(x),g(x).是同一个函数,定义域、对应关系都相同不是同一个函数,对应关系不同,f(x)|x3|,g(x)x3.是同一个函数,定义域、对应关系都相同反思感悟判断两个函数为同一个函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是同一个函数,即使定义域与值域都相同,也不一定是同一个函数(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的(3)在化简解析式时,必须是等价变形跟踪训练3下列各组函数中是同一个函数的是()Ayx1与yByx21与st21Cy2x与y2x(x0)Dy(x1)2与yx2答案B解析A,C选项中两函数的定义域不同,D选
5、项中两函数的对应关系不同,故A,C,D错误四、求抽象函数的定义域例4(1)函数yf(x)的定义域是1,3,则f(2x1)的定义域为_答案1,1解析令12x13,解得1x1,所以f(2x1)的定义域为1,1(2)若函数yf(3x1)的定义域为2,4,则yf(x)的定义域是()A1,1 B5,13C5,1 D1,13答案B解析由题意知,2x4,所以53x113,所以yf(x)的定义域是5,13反思感悟抽象函数的定义域(1)已知f(x)的定义域为a,b,求f(g(x)的定义域时,不等式ag(x)b的解集即定义域(2)已知f(g(x)的定义域为c,d,求f(x)的定义域时,求出g(x)在c,d上的范围
6、(值域)即定义域跟踪训练4已知函数f(x1)的定义域为x|2x3,则函数f(2x1)的定义域为()Ax|1x9 Bx|3x7Cx|2x1 D.答案D解析函数yf(x1)的定义域为x|2x3,2x3,则3x12,即函数f(x)的定义域为x|3x2对函数f(2x1),有32x12,解得2x.即函数f(2x1)的定义域为.1知识清单:(1)区间的表示(2)求简单函数的定义域和函数值(3)判断是否为同一个函数(4)求抽象函数的定义域2方法归纳:整体代换3常见误区:不会用整体代换的思想求抽象函数的定义域1已知区间2a1,11,则实数a的取值范围是()A(,6) B(6,)C(1,6) D(1,6)答案A
7、解析由题意可知,2a111,解得a6.2已知四组函数:f(x)x,g(x)()2;f(x)x,g(x);f(n)2n1,g(n)2n1(nN);f(x)x22x1,g(t)t22t1.其中是同一个函数的是()A没有 B仅有C D答案C解析对于,定义域不同;对于,对应关系不同;对于,定义域与对应关系都相同3已知函数f(x),则f等于()A. B. Ca D3a答案D解析f3a.4函数y的定义域是_答案x|x1且x1解析由题意可得所以x1且x1,故函数y的定义域为x|x1且x11区间(0,1等于()A0,1 B(0,1Cx|0x1 Dx|0x1答案C2函数f(x)的定义域为()A. B.C. D.
8、答案D解析要使f(x)有意义,只需满足即x且x0.3设函数f(x)3x21,则f(a)f(a)的值是()A0 B3a21 C6a22 D6a2答案A解析f(a)f(a)3a213(a)210.4(多选)下列各组函数为同一个函数的是()Af(x)x,g(x)Bf(x)1,g(x)(x1)0Cf(x),g(x)Df(t),g(t)t4(t4)答案CD解析A这两个函数的定义域不同,所以这两个函数不是同一个函数;B这两个函数的定义域不同,所以这两个函数不是同一个函数;C这两个函数的定义域与对应关系均相同,所以这两个函数为同一个函数;D这两个函数的定义域与对应关系均相同,所以这两个函数是同一个函数5若f
9、(x)2x1,则f(f(x)等于()A2x1 B4x2C4x3 D2x3答案C解析f(f(x)f(2x1)2(2x1)14x3.6已知函数f(x)的定义域为(1,1),则函数g(x)ff(x2)的定义域为()A(0,2) B(1,2)C(2,3) D(1,1)答案B解析由题意知解得1x2.7若函数f(x)的定义域为2a1,a1,值域为a3,4a,则a的取值范围为_答案(1,2)解析由区间的定义知解得1a2.8函数f(x)的定义域为_答案3,4)(4,)解析要使函数有意义,则即即x3且x4,故函数f(x)的定义域为3,4)(4,)9已知f(x),g(x)x21,xR.(1)求f(2),g(2)的
10、值;(2)求f(g(3)的值解(1)f(2),g(2)2215.(2)f(g(3)f(321)f(10).10求下列函数的定义域:(1)f(x)4;(2)f(x).解(1)要使函数式有意义,必须满足即解得x,所以函数的定义域为.(2)要使函数式有意义,必须满足即解得所以函数的定义域为x|x0且x311已知f(x)ax3bx1,则f(1)f(1)的值是()A0 B1 C1 D2答案D解析由题意知函数f(x)ax3bx1,可得f(1)ab1,f(1)ab1,所以f(1)f(1)2.12下列四组函数中表示同一个函数的是()Af(x),g(x)xBf(x)x2,g(x)(x1)2Cf(x),g(x)|
11、x|Df(x)0,g(x)答案C解析f(x)x,g(x)x,对应关系不同,A选项中两个函数不表示同一个函数;f(x)x2,g(x)(x1)2,两个函数的对应关系不一致,B选项中两个函数不表示同一个函数;f(x)|x|与g(x)|x|,两个函数的定义域均为R,对应关系也相同,C选项中两个函数表示同一个函数;f(x)0,g(x)0(x1),两个函数的定义域不一致,D选项中两个函数不表示同一个函数13已知函数yf(2x1)的定义域是1,2,则yf(x)的定义域是()A. B3,3C1,5 D以上都不对答案B解析由题意知1x2,所以32x13,所以yf(x)的定义域为3,314函数y的定义域为R,则a
12、的取值范围为_答案0,4解析当a0时,10恒成立,所以a0,符合题意;当a0时,由题意知0a4.所以a的取值范围为0,415已知g(x)12x,f(g(x)(x0),则f_.答案15解析g(x),即12x,则x,代入f(g(x)(x0),可得f15.16已知函数f(x)对任意实数x,y都有f(xy)f(x)f(y)成立(1)求f(0)和f(1)的值;(2)若f(2)a,f(3)b(a,b均为常数),求f(36)的值解(1)令xy0,则f(0)2f(0),f(0)0,令xy1则f(1)2f(1),f(1)0.(2)令x2,y3,则f(6)f(2)f(3)ab,令xy6,则f(36)2f(6)2(ab),f(36)2(ab)
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。