1、小学数学解题策略(21)守恒法第二十一讲 守恒法应用题中的数量有的是变化的,有的是始终不变的。解应用题时,抓住始终不变的数量,分析不变的数量与其他数量的关系,从而找到解题的突破口,把应用题解答出来的解题方法,叫做守恒法,也叫抓不变量法。(一)总数量守恒有些应用题中不变的数量是总数量,用守恒法解题时要抓住这个不变的总数量。例1 晶晶要看一本书,计划每天看15页,24天看完。如果要12天看完,每天要看多少页?如果改为每天看18页,几天可以看完?(适于三年级程度)解:无论每天看多少页,总是看这一本书,只要抓住这本书的“总页数不变”这个关键,问题就好办了。这本书的总页数是:1524=360(页)如果要
2、12天看完,每天要看的页数是:36012=30(页)如果改为每天看18页,看完这本书的天数是:36018=20(天)答略。此题由于第一步是用乘法求出总数,因此也叫做“归总”应用题。*例2 用一根铁丝围成一个长26厘米,宽16厘米的长方形。用同样长的铁丝围成一个正方形,正方形所围成的面积是多少?(适于三年级程度)解:这根铁丝的长是不变的量,铁丝围成的长方形的周长和正方形的周长相同。即:262+162=52+32=84(厘米)正方形的边长是:844=21(厘米)正方形所围成的面积是:2121=441(平方厘米)答略。解:书架上书总的本数是不变的数量,设它为单位1。从“上层书的本书总的本数分成5份,
3、上层的书占总本数的因此,书总的本数是:原来书架的上层有书:原来书架的下层有书:90-18=72(本)(二)部分数量守恒当应用题中不变的数量是题中的一部分数量时,要抓住这个不变的部分数量解题。例1 一辆汽车,从甲站到乙站,要经过20千米的平路,45千米的上坡路,15千米的下坡路。如果这辆汽车在平路上每小时行40千米,在上坡路上每小时行30千米,在下坡路上每小时行45千米。照这样的速度行驶,这辆汽车在甲、乙两站间往返一次需要多少时间?(适于五年级程度)解:无论汽车行驶在平路上、上坡路上,还是在下坡路上,每一段路上的速度是不变的。这辆汽车往返一次共行:在平路(20+20)千米在上坡路(45+15)千
4、米在下坡路(15+45)千米这辆汽车往返一次需要的时间是:答略。例2 有含盐15的盐水20千克,要使盐水含盐10,需要加水多少千克?(适于六年级程度)解:题中盐的重量是不变的数量,盐的重量是:2015=3(千克)在盐水含盐10时,盐的对应分率是10,因此盐水的重量是:310=30(千克)加入的水的重量是:30-20=10(千克)答略。解:文艺书的本数是不变的数量。文艺书有:=720(本)从后来两种书总的本数中减去原来两种书总的本数,得到买进科技书的本数:720-630=90(本)综合算式:=720-630=90(本)答略。(三)差数守恒当应用题中两个数量的差是不变的数量时,要抓住这个差,分析数
5、量关系解题。例1 父亲今年35岁,儿子5岁。多少年后父亲的年龄是儿子年龄的3倍?(适于四年级程度)解:父子年龄的差是个不变的数量,始终是35-5=30(岁)在父亲年龄是儿子年龄的3倍时,父子年龄的差恰好是儿子年龄的2倍。因此,这时儿子的年龄是:302=15(岁)15-5=10(年)答:10年后父亲的年龄是儿子年龄的3倍。*例2 小明有200个枣,大平有120个枣。两人吃掉个数相同的枣后,小明剩下的枣是大平剩下枣的5倍。问两个人一共吃掉多少个枣。(适于四年级程度)解:两个人相差的枣的个数是不变的数量:200-120=80(个)两人吃掉个数相同的枣后,小明剩下的枣是大平剩下枣的5倍。这就是说大平剩
6、下的枣是1份数,小明剩下的枣比大平剩下的枣多4份数。因为两人吃掉的枣的个数相同,所以相差数还是80个。这80个是4份数。因此,大平剩下的枣是其中的一份数:804=20(个)大平吃掉的枣是:120-20=100(个)因为两个人吃掉的枣一样多,所以一共吃掉枣:1002=200(个)答略。*例3 有甲、乙两个车间,如果从甲车间调出18人给乙车间,甲车间就比乙车间少3人;如果从两个车间各调出18人,乙车间剩下人数就是甲车间解:由“从甲车间调出18人给乙车间,甲车间就比乙车间少3人”可看出,甲车间比乙车间多2个18人又少3人,即甲车间比乙车间多:182-3=33(人)由“从两个车间各调出18人,乙车间剩下的人数就是甲车间剩下人数的甲车间原有的人数是:88+18=106(人)乙车间原有的人数是:106-33=73(人)答略。*例4 甲种布的长是乙种布长的3倍。两种布各用去8米时,甲种布剩下的长是乙种布剩下长度的4倍。两种布原来各长多少米?(适于六年级程度)解:甲、乙两种布的长度差是不变的数量,解题时要以这个不变的数量作为标准量。原来乙种布的长是标准量的:乙种布先后两个分率的差是:乙种布的长是:甲种布的长是:48+24=72(米)答略。10