1、小学数学解题策略(47)运用图形间的等量关系 47、运用图形间的等量关系【应用弦图解题】 我国古代有种图形叫做“弦图”(如图4.56所示),有的数学家应用它成功地证明了“勾股定理”。我国宋代著名数学家杨辉,在他著的田亩比类乘除捷法一书中,提出了这样一个问题:有一块长方形田,面积为864平方步(“步”是古代长度单位,1里=300步,1步=5尺),已知长比宽少12步,问:它的长、宽共是多少步?杨辉在该书上出示了一个弦图(如图4.57),他是用四个面积为864共是60步。显然,这样运用弦图来解答题目,是十分高明和十分巧妙的!有些竞赛题也可以用弦图来巧解。第一届“华罗庚金杯赛”中,就两次出现了应用弦图
2、来解答的题目。尤其是那一道决赛题:平方米。锯下的木条面积是多少平方米?”仿杨辉的解法,可假定剩下4块长方形木块,并利用它拼成了一个“弦图”,如图4.58。于是可知,大正方形的面积为【解纵横交错的复杂题】 把同样大小的长方形有规律地纵横交错地放在一起,常常需要根据长、宽关系,找出等量关系来解答题目。例如如图4.59,这是由同样大小的纸片摆成的图形,小纸片宽12厘米,求阴影部分的总面积。由图可知,5个纸片的长=3个纸片的长+3个纸片的宽,所以2个纸片长=3个纸片宽1个纸片长=1232=18(厘米)进而可知,每个阴影部分的小正方形的边长为18-12=6(厘米)阴影部分的总面积便是663=108(平方
3、厘米)又如,“有9个长方形,它们的长、宽分别相等,用它们拼成的大长方形(如图4.60)的面积是45平方厘米,求大长方形的周长。”解题的关键,是求出一个小长方形的长和宽。由5个小长方形的宽等于形重新分割为5个小正方形,小正方形的边长,正好是小长方形的宽(如图4.61)。所以,5个小正方形面积之和,就是四个小正方形的面积之和,即5个小正方形面积为4594=20(平方厘米)每个小正方形的面积为205=4(平方厘米)显然,每个小正方形的边长(即小长方形的宽)为2厘米,小长方形的长便是进而便可求得大长方形的周长为2.54(2.52)2=29(厘米)。此外,题目还可这样解答:因为小长方形宽的5倍等于长的4
4、倍,所以,可用(4与5的最小公倍数)20个小长方形拼成一个大的正方形(如图4.62)。大正方形面积是它的边长便是10厘米,则小正方形的长为104=2.5(厘米)小正方形的宽为105=2(厘米)于是,原来的大长方形的周长就是(2.542.52)2=29(厘米)。【用面积线段比的关系解题】 利用面积比与线段比之间的等量关系,常常能使复杂问题简单化。例如为什么成立?由图中可以看出,PBC和ABC是同底的两个三角形,所以又如,第一届“华罗庚金杯赛”上有过一道这样的题目:“如图4.64,一个长方形地面被两条直线分成四个长方形,其中三个的面积是20公亩、25公亩和30公亩,另一个(图中阴影部分)长方形的面积是多少公亩?”图中可见,右边两个长方形是长相同的长方形,它们的面积比等于它们宽的比;同样,左边两个长方形也是长相同的长方形,它们的面积比,也等于它们宽的比。设阴影部分面积为x公亩,由于左右两组长方形面积之比,都等于相同的宽之比,所以即另一个(阴影部分)长方形面积为37.5公亩。8