ImageVerifierCode 换一换
格式:PPT , 页数:92 ,大小:668.15KB ,
文档编号:3861319      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3861319.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第6章FIR数字滤波器设计课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第6章FIR数字滤波器设计课件.ppt

1、第第6章章 FIR数字滤波器设计数字滤波器设计 6.1 FIR数字滤波器原理数字滤波器原理 6.2 使用使用DSP Builder设计设计FIR数字滤波器数字滤波器 6.3 使用使用FIR IP Core设计设计FIR滤波器滤波器 6.1 FIR数字滤波器原理数字滤波器原理 对于一个FIR滤波器系统而言,它的冲激响应总是有限长的,其系统函数可以记为MkkkzbzH0)(其中M是FIR滤波器的零点数,即延时节数,为叙述简便,在本章中M被称为FIR滤器的阶数。最基本的FIR滤波器可用下式表示:10)()()(Liihinxny 其中x(n)是输入采样序列,h(i)是滤波器系数,L是滤波器的系数长度

2、,y(n)表示滤波器的输出序列。也可以用卷积来表示输出序列y(n)与x(n)、h(n)的关系。)()()(nhnxny 图6-1中显示了一个典型的直接I型4阶FIR滤波器,其输出序列y(n)满足下列等式:)3()3()2()2()1()1()()0()(nxhnxhnxhnxhnh图6-1 4阶FIR滤波器结构 z1x(n)h(0)y(n)z1z1h(1)h(2)h(3)在这个FIR滤波器中,总共存在3个延时节,4个乘法单元,一个4输入的加法器。如果采用普通的数字信号处理器(DSP Processor)来实现,只能用串行的方式顺序地执行延时、乘加操作,这不可能在一个DSP(指数字信号处理器)指

3、令周期内完成,必须用多个指令周期来完成。但是,如果采用FPGA来实现,就可以采用并行结构,在一个时钟周期内得到一个FIR滤波器的输出。6.2 使用使用DSP Builder设计设计FIR数字滤波器数字滤波器 使用DSP Builder可以方便地在图形化环境中设计FIR数字滤波器,而且滤波器系数的计算可以借助Matlab强大的计算能力和现成的滤波器设计工具来完成。6.2.1 3阶常系数FIR滤波器的设计 在此用以下示例来说明整个设计过程。假定一个3阶的FIR滤波器,其可以表示为)3()3()2()2()1()1()()0()(nxhnxhnxhnxhCnhq 其中:h(0)=63,h(1)=12

4、7,h(2)=127,h(3)=63,是量化时附加的因子。这里采用直接I型来实现该FIR滤波器。设计好的3阶直接I型FIR滤波器模型图可以参见图6-2。具体的新模型建立、模块调用过程可以参见第3章。图6-2 3阶FIR滤波器图中模块的参数作如下设置:xin模块:(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Input port”参数“number of bits”设为“8”yout模块:(Altbus)库:Altera DSP Builder中Bus Man

5、ipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Output port”参数“number of bits”设为“8”Parallel Adder Subtractor模块:(Parallel Adder Subtractor)库:Altera DSP Builder中Arithmetic库“Add(+)Sub(-)”设为“+”Delay1、Delay2、Delay3模块:(Delay)库:Altera DSP Builder中Storage库参数“Depth”设为“1”参数“Clock Phase Selection”设为“1”

6、h0模块:(Gain)库:Altera DSP Builder中Arithemtic库参数“Gain Value”设为“63”参数“Map Gain Value to Bus Type”设为“Signed Integer”参数“Gate Value number of bits”设为“8”参数“Number of Pipeline Levels”设为“0”h1模块:(Gain)参数“Gain Value”设为“127”其余同h0模块 h2模块:(Gain)参数“Gain Value”设为“127”其余同h0模块 h3模块:(Gain)参数“Gain Value”设为“63”其余同h0模块 由于

7、FIR滤波器的系数已经给定,是一个常数,从图中看到,在DSP Builder中可以用Gain(增益)模块来实现的运算,用延时Delay模块来实现输入信号序列的延时。设计完3阶FIR滤波器模型后,就可以添加Simulink模块进行仿真了,如图6-3所示。图6-3 带仿真模块的3阶滤波器模型新增的仿真模块的参数作如下设置:Chirp Signal模块:(Chirp Signal)库:Simulink中Sources库参数“Initial Frequency(Hz)”设为“0.1”参数“Target time”设为“10”参数“Frequency at target time(Hz)”设为“1”参数

8、“Interpret vectors parameters as 1-D”选中Gain模块:(Gain)库:Simulink中Math Operations库参数“Gain”设为“127”参数“Multiplication”设为“Element wise(K.*u)”Scope模块:(Scope)库:Simulink中sinks库参数“Number of Axes”为“2”其中,Chirp Signal模块为线性调频信号发生模块,生成一个线性调频信号0.1 Hz1 Hz。在该模型仿真中,使用默认的仿真参数。仿真结果如图6-4所示。显然,一个线性调频信号通过3阶FIR滤波器后幅度发生了变化,频率

9、较高部分的幅度被衰减了。图6-4 FIR滤波器仿真结果 6.2.2 4阶FIR滤波器节的设计 上节介绍的是常系数FIR滤波器的示例。本节将设计一个系数可变的FIR滤波器节。对于直接I型的FIR滤波器(结构见图6-5),是可以级联的。也就是说,在滤波器系数可变的情况下,可以预先设计好一个FIR滤波器节,在实际应用中通过不断地调用FIR滤波器节,将其级联起来,用来完成多阶FIR滤波器的设计。当然,对于线性相位的FIR滤波器,我们可以采用改进后的滤波器结构,可以节省一半的乘法器。在这里,为了叙述方便,没有采用改进后的FIR结构。图6-5 直接I型FIR滤波器结构z1xinh(0)youtz1z1h(

10、1)h(2)x(n)z1h(k 1)h(k)x(n k)图6-6是一个直接I型的4阶FIR滤波器节的结构。为了使该滤波器节的调用更为方便,在xin输入后插入了一个延时单元,由3阶滤波器演变成4阶的,不过常系数项(系数项)恒为0。由于在通信应用中,FIR滤波器处理的往往是信号流,因而增加一个延时单元不会影响FIR滤波器处理的结果,只是系统延时增加了一个时钟周期。图6-6 直接I型4阶FIR滤波器节 z1xinh(1)y4outz1z1h(2)h(3)h(4)x(n1)z1 对于该FIR滤波器节,其系统函数可以用下式来表示:由于浮点小数在FPGA中实现比较困难,实现的代价太大,因而在DSP Bui

11、lder中不妨使用整数运算来实现,最后用位数舍取的方式得到结果。为了使参数可变,FIR滤波器系数、也作为输入端口。在本设计中输入序列的位宽设为9位。图6-7显示的就是一个设计好的4阶FIR滤波器节,与图6-2的常数FIR滤波器相比,这里用Product(乘法)模块代替了Gain(增益)模块。图6-7 直接I型4阶FIR滤波器节图6-7中相关模块的参数设置如下:xin、hn1、hn2、hn3、hn4模块:(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Input

12、 port”参数“number of bits”设为“9”yn模块:(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Output port”参数“number of bits”设为“20”xn4模块:(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Output port”参数“number of bits”设为“9”Paral

13、lel Adder Subtractor模块:(Parallel Adder Subtractor)库:Altera DSP Builder中Arithmetic库参数“Add(+)Sub(-)”设为“+”使用“Pipeline”参数“Clock Phaese Selectioon”设为“1”Delay、Delay1、Delay2、Delay3模块:(Delay)库:Altera DSP Builder中Storage库参数“Depth”设为“1”参数“Clock Phase Selection”设为“1”Product模块:(Product)库:Altera DSP Builder中Arit

14、hemtic库参数“Pipeline”设为“2”参数“Clock Phase Selection”设为“1”不选择“Use LPM”6.2.3 16阶FIR滤波器模型设计 利用以上设计的4阶FIR滤波器节可以方便地搭成阶直接I型FIR滤波器(注意:)。比如要实现一个16阶的低通滤波器,可以调用4个4阶FIR滤波器节来实现。1.设计4阶FIR滤波器节子系统 建立一个新的DSP Builder模型,复制上节的FIR4tap模型到新模型。按照第4章所示的方法由FIR4tap模型建立子系统(SubSystem),并对端口信号进行修改,把子系统更名为fir4tap,如图6-8所示。fir4tap的内部结

15、构如图6-9所示。图6-8 fir4tap子系统 图6-9 fir4tap子系统内部原理图 2.组成16阶FIR滤波器模型 复制4个fir4tap,并将它们衔接起来。前一级的输出端口x4接后一级的x输入端口,并附加上16个常数端口,作为FIR滤波器系数的输入。把4个子系统fir4tap的输出端口y连接起来,接入一个4输入端口的加法器,得到FIR滤波器的输出yout。注意:在作好子系统后,要按照第4章中所述的方式,修改其Mask参数Mask Type为“SubSystem AlteraBlockSet”。设计好的16阶FIR滤波器如图6-10所示。图6-10 16阶直接I型FIR滤波器模型16阶

16、直接I型FIR滤波器模型中,对新增加的模块作如下设置:xin模块:(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Input port”参数“number of bits”设为“9”yout模块:(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Output port”参数“number of bits”设为“20”x16模块:

17、(Altbus)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“signed Integer”参数“Node Type”设为“Output port”参数“number of bits”设为“9”Parallel Adder Subtractor模块:(Parallel Adder Subtractor)库:Altera DSP Builder中Arithmetic库参数“Add(+)Sub(-)”设为“+”使用“Pipeline”参数“Clock Phaese Selectioon”设为“1”h0、h1、h2、h3、h4、h5、h6、

18、h7、h8、h9、h10、h11、h12、h13、h14、h15模块:(Delay)库:Altera DSP Builder中Bus Manipulation库参数“Bus Type”设为“Signed Integer”参数“number of bits”设为“9”6.2.4 使用MATLAB的滤波器设计工具1.滤波器指标若需要设计一个16阶的FIR滤波器(),给定的参数如下:低通滤波器 采样频率Fs为48 kHz,滤波器Fc为10.8 kHz 输入序列位宽为9位(最高位为符号位)在此利用MATLAB来完成FIR滤波器系数的确定。2.打开MATLAB的FDATool MATLAB集成了一套功能

19、强大的滤波器设计工具FDATool(Filter Design&Analysis Tool),可以完成多种滤波器的设计、分析和性能评估。点击MATLAB主窗口下方的“Start”(开始)按钮,按 图 6-1 1 选 择“T o o l B o x”“F i l t e r Design”“Filter Design&Analysis Tool(FDATool)”,打开FDATool,如图6-12所示。图6-11 打开FDATool 图6-12 FDATool界面3.选择Design FilterFDATool界面左下侧排列了一组工具按钮,其功能分别如下所述:滤波器转换(TransForm Fi

20、ler)设置量化参数(Set Quantization Parameters)实现模型(Realize Model)导入滤波器(Import Filter)设计滤波器(Design Filter)选择其中的按钮,进入设计滤波器界面,进行下列选择:滤波器类型(Filter Type)为低通(Lowpass);设计方法(Design Method)为FIR,采用窗口法(Window);滤波器阶数(Filter Order)定制为15;窗口类型为Kaiser,Beta为0.5;Fs为48 kHz,Fc为10.8 kHz。设置好后的界面见图6-13。注意:在滤波器阶数选择时,在此设置的是15阶,而不是

21、16阶!这是由于在前面设计的16阶FIR滤波器的常系数项。其系统函数可用下式来表示:图6-13 滤波器设计界面 显然上式可以写成:即可以看成是一个15阶的FIR滤波器的输出结果经过了一个单位延时单元。所以在FDATool中把它当成15阶FIR滤波器来计算参数。点击,让MATLAB计算FIR滤波器系数并作相关分析。4.滤波器分析 计算完FIR滤波器系数后,往往需要对设计好的FIR滤波器进行相关的性能分析,以便了解该滤波器是否满足设计要求。分析操作步骤如下:选择FDATool的菜单“Analysis”“Magnitude Response”,启动幅频响应分析。图6-14显示了滤波器的幅频响应图,x

22、轴为频率,y轴为幅度值(单位为dB)。在图的左侧列出了当前滤波器的相关信息:滤波器类型为Direct form FIR(直接I型FIR滤波器);滤波器阶数为15。注意:不是每种FIR滤波器设计方法计算出的滤波器都是直接I型结构的。如果在DSP Builder中设计的FIR滤波器为直接I型结构,那就必须保证在这里显示的FIR滤波器结构为“Direct form FIR”。图6-14 FIR滤波器的幅频响应 选择菜单“Analysis”“Phase Response”,启动相频响应分析。图6-15显示了滤波器的相频响应。由图可以看到设计的FIR滤波器在通带内其相位响应为线性的,即该滤波器是一个线性

23、相位的滤波器。图6-16显示了滤波器幅频特性与相频特性的比较。这可以通过菜单选择“Analysis”“Magnitude&Phase Response”来启动分析。选择菜单“Analysis”“Group Delay Response”,启动群延时分析,波形如图6-17所示。图6-15 FIR滤波器的相频响应 图6-16 幅频响应与相频响应的比较 图6-17 FIR滤波器的群延时 在菜单“Analysis”下还有一些分析:“Impulse Response”:冲激响应,见图6-18。“Step Response”:阶跃响应,见图6-19。“Pole/Zero Plot”:零极点图,见图6-20

24、。由于直接I型FIR滤波器只有零点,所以在图6-20中不存在极点。图6-18 FIR滤波器的冲激响应 图6-19 FIR滤波器的阶跃响应 图6-20 FIR滤波器的零极点 求出的FIR滤波器的系数可以通过选择菜单“Analysis”“Filter Coefficients”来观察,见图6-21。图中列出了FDATool计算的15阶直接I型FIR滤波器的部分系数。图6-21 FIR滤波器系数 5.量化 从图6-21可以看到,FDATool计算出的值是一个有符号小数,而在DSP Builder下建立的FIR滤波器模型需要一个整数作为滤波器系数。所以必须进行量化,并对得到的系数进行归一化。为此,点击

25、FDATool左下侧的工具按钮进行量化参数设置。在设置“Turn quantization on”前选择“”,如图6-22所示。在滤波器的设计指标中,已经提到FIR滤波器的输入位宽是9位,表示为有符号数。在图6-22中设置前4项的量化格式(Format)为“9 8”,表示量化后位宽为9位,绝对值为8位;设置后2项(乘积、乘积和)的量化格式为“18 16”。点击按钮,打开图6-23所示的对话框。在此量化优化设置对话框中选择相关的优化选项。图6-24中显示了量化后的部分系数值。注意在这里系数仍是用小数表示的,不同于量化前的系数,现在其二进制表示的位数已满足量化要求。图6-22 量化参数设置 图6-

26、23 量化优化设置对话框 图6-24 量化后的系数值 设计的FIR滤波器在量化后滤波器的性能会有所改变,其幅频响应、相频响应也有所变化。量化在带来实现方便的同时也带来了量化噪声,图6-26显示了量化带来的噪声分析。图6-25 量化后的幅频、相频响应 图6-26 量化后的噪声分析 6.导出滤波器系数 为导出设计好的滤波器系数,选择FDATool菜单的“File”“Export.”,打开导出(Export)对话框,如图6-27所示。在该窗口中,选择导出到工作区(Workspace)。这时滤波器系数就存入到一个一维变量Num中了,不过这时Num中的元素是以小数形式出现的:Num=-0.0742 0.

27、0234 0.1133 0.0117 -0.1758 -0.0977 0.3594 0.8281 0.8281 0.3594 -0.0977 -0.1758 0.0117 0.1133 0.0234 -0.0742 图图6-27 导出系数对话框导出系数对话框 现在若要在FIR滤波器模型中使用这些数据,还需要将它们转化为整数:在MATLAB主窗口的命令窗口中键入:Num*(28)得到:Num*(28)ans=Columns 1 through 10 -19 6 29 3 -45-25 92 212 212 92 Columns 11 through 16 -25-45 3 29 6 -19 7.

28、修改FIR滤波器模型添加参数 把计算出的系数逐个填入到FIR滤波器模型中,见图6-28。这样就完成了一个16阶直接I型FIR低通滤波器的设计。图6-28 16阶低通FIR滤波器 8.导出滤波器系数的另一种方法 按照上面介绍的导出滤波器系数的方法在FIR滤波器阶数较大时就不太方便,而且在设计要求有所变化时系数的修改极为不利。可以按照以下方法来导出:把FIR滤波器模型中的h1h16模块的参数“Constant Value(常数值)”设置为:Num(n)*(28)其中Num同上文所述,是FDATool的导出系数,n用具体的数字来代替,如h1模块用Num(1)*(28),h2模块用Num(2)*(28

29、)。6.2.5 16阶FIR滤波器的硬件实现 1.由Simulink模型转成VHDL 打开SingalCompiler,选定器件系列,把模型转成VHDL文件,具体操作步骤可以参见第3章。2.综合 在SignalCompiler中选择Quartus II进行综合,或者利用第三方综合工具,比如LeonardoSpectrum进行综合。图6-29显示了LeonardoSpectrum综合结果的部分RTL原理图。3.适配下载 如果采用Quartus II进行综合,在Quartus II中打开SignalCompiler建立的Quartus项目文件,选择具体器件,锁定管脚,完成适配后下载至FPGA开发板

30、中。若采用其它综合工具进行综合,适配流程请参见第4章。在FPGA开发板上加入高频信号源,验证FIR滤波器的滤波效果。图6-29 LeonardoSpectrum综合结果6.3 使用使用FIR IP Core设计设计FIR滤波器滤波器 对于一个面向市场和实际工程应用的系统设计,在开发速度和效率方面要求很高。然而对于一般的设计者,在短期内也不可能全面了解FIR滤波器(指在FPGA上实现)相关的优化技术,也没有必要了解过多的细节。另外,FIR滤波器的滤波系数的确定,即FIR滤波器的设计方法也是比较麻烦的,需要花费大量的精力和时间才能设计出在速度、资源利用、性能上都满足要求的FIR滤波器。另一方面,虽

31、然DSP Builder提供了大量的基本DSP模块,但是要了解用哪些模块可以构建一个高效的FIR滤波器仍然不是一件简单的事情。但是,如果采用设计好的FIR滤波器的IP核,几乎可以很容易地解决以上的问题。对于IP核,在速度、资源利用、性能上往往进行过专门的优化,还提供了相关的IP应用开发工具。Altera提供的FIR Compiler是一个结合Altera FPGA器件的FIR Filter Core,DSP Builder与FIR Compiler可以紧密地结合起来。DSP Builder提供了一个FIR Core的应用环境和仿真验证环境。6.3.1 FIR滤波器核与DSP Builder集成

32、 使用FIR Core之前,首先必须保证Matlab、DSP Builder、Quartus II以及IP核的本身,即FIR Compiler等工具安装正确。如果一切正常,我们可以在Simulink库管理器中看到“Altera MegaCore FIR Compiler”这个库,如图6-30所示。MegaCore是Altera的IP Core计划中的一个组成部分,FIR Compiler作为一个MegaCore,不附带在DSP Builder和Quartus II中,需要单独向Altera公司购买或申请试用版。现在最新的FIR Compiler的版本可以支持Quartus II和DSP Bui

33、lder。图6-30 FIR Core模块 6.3.2 FIR滤波器核的使用 1.调用FIR模块 在Simulink环境中新建一个模型,放置SignalCompiler模块和FIR模块(如图6-31)。注意:在DSP Builder中使用FIR Compiler时,需要有SignalCompiler的支持,所以在使用配置FIR模块时,必须放置SignalCompiler模块。图6-31 调用FIR Core 2.配置FIR滤波器核 假定需要设计一个带通的高阶FIR滤波器,设计指标如下:滤波器类型:带通(BandPass)采样频率:50 MHz 通带:24 MHz 阶数:64 双击新模型中的FI

34、R模块,打开FIR滤波器核的设置窗口,进行FIR滤波器参数的配置(参见图6-32)。图6-32 确定FIR滤波器系数 在这里,设计者只要把设计要求直接输入到对应的设置框,并点击“Apply”(应用)按钮,FIR滤波器的系数就自动计算完成,并在窗口中显示出设计的FIR滤波器的幅频特性。除了将设计指标输入外,还有一些选项可以设置,比如FIR滤波器设计时采用的窗函数类型,在这里我们设为Blackman窗。设计者不用关心这些窗口类型在FIR滤波器设计中的具体实现算法,只要观察不同的窗函数(Window)对FIR滤波器性能的影响,选定其中一种最符合设计性能要求的窗函数类型即可。点击“Apply”按钮后在

35、图中的右侧就显示了计算出的滤波器系数。注意在这里FIR滤波器的系数还没有被量化。设置完后点击“Next”按钮,进行下一步设置,完成系数的量化。FIR滤波器在FPGA上进行实现时,往往需要进行滤波器系数的量化,系数以整数的面目出现在图6-33中。可以选择合适的系数的位宽,同时在设置窗口中还显示了当前滤波器的幅频响应,可用以分析系数量化对FIR滤波器性能的影响。设计者应在满足设计要求的前提下尽可能地减少系数的位宽,以减少FPGA资源的耗费。图6-33 FIR滤波器系数分析和量化 3.FIR滤波器结构与分析 FIR Compiler可以帮助设计者完成FIR滤波器的结构分析并生成仿真时的仿真文件。图6

36、-35显示了具体实现的FIR滤波器和采用的滤波器结构,以及具体用什么系列的FPGA加以实现,或实现在FPGA的哪种资源中,某些选项可以更改。点击“Next”后进行FIR滤波器核的仿真分析,图6-36显示了在时域中表示的FIR滤波器的冲激响应。图6-37显示了阶跃响应。图6-34 FIR滤波器的I/O设置 图6-35 FIR滤波器结构图6-36 冲激响应图6-37 阶跃响应 FIR Compiler在进行FIR滤波器分析的同时可以帮助设计者生成对应的仿真文件,并以多种形式出现。比如仿真用的MATLAB文件,用于Quartus II的仿真激励文件,用于HDL仿真器的TestBench文件等。4.FIR滤波器核的硬件测试 设计好的FIR Core可以像普通的DSP Builder模块一样使用,与其它设计模块相连接,并在Simulink中进行仿真,直至使用SignalCompiler完成到VHDL的转化。最后,接着送入Quartus II进行编译、适配,完成后下载到FPGA开发板上进行硬件测试。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|