1、工程结构可靠度设计原理课件第四章风荷载_OK第四章风荷载 2022-10-62Breeze,wind,storm2022-10-632022-10-642022-10-65古巴首都哈瓦那海滨大街2005.10.24飓风“威尔玛”掀起巨浪,越过堤岸,拍打着楼房 2022-10-66美国新奥尔良飓风袭击美国新奥尔良飓风袭击80%80%的土地被淹,死亡上千人,的土地被淹,死亡上千人,20002000亿美金的重建费用亿美金的重建费用2022-10-67飓风丽塔袭击美国飓风丽塔袭击美国2022-10-684-9 飓风伊万在美国已造成45人死亡,其中16人在佛罗里达。飓风造成的损失在30亿至100亿美元之
2、间。2022-10-64-10飓风伊万摧毁的房屋2022-10-64-11 伊万过后,美国佛罗里达州彭萨科拉市附近的一座大桥被飓风伊万摧毁 2022-10-68 8月月1818日台风圣帕日台风圣帕2022-10-612雷暴高压2022-10-6132022-10-6142022-10-6152022-10-616风起前后风起前后2022-10-617塔科马海峡大桥被风吹垮发生于美国太平洋时塔科马海峡大桥被风吹垮发生于美国太平洋时间间19401940年年1111月月7 7日上午日上午1111时,原因是气弹颤振。时,原因是气弹颤振。2022-10-6184-192022-10-62022-10-6
3、202022-10-6212022-10-6224.1 风的有关知识4.2 风压4.3 结构抗风计算的几个重要概念4.4 顺风向结构风效应4.5 横风向结构风效应2022-10-6234-24风是空气从气压大的地方向气压小的地方流动而形成的。风是空气从气压大的地方向气压小的地方流动而形成的。压力差风结构物风压 大气热力学环流模型理想模型三圈环流模型地球自转大陆与海洋吸热差异4.1 风的有关知识4.1.1 风的形成2022-10-64-25 大气热力学环流模型4.1 风的有关知识4.1.1 风的形成 赤道和低纬度地区:受热量较多,气温高,空气密度小、气压小赤道和低纬度地区:受热量较多,气温高,空
4、气密度小、气压小,且大气因加热膨胀,由表面向高空上升且大气因加热膨胀,由表面向高空上升 极地和高纬度地区:受热量较少,气温低,空气密度大、极地和高纬度地区:受热量较少,气温低,空气密度大、气压大,气压大,且大气因冷却收缩,由高空向地表下沉且大气因冷却收缩,由高空向地表下沉2022-10-64-264.1 风的有关知识4.1.1 风的形成全球风环流全球风环流2022-10-64-271.台风4.1 风的有关知识4.1.2 两类性质的大风弱的热带气旋性涡旋弱的热带气旋性涡旋复合气流将大量暖湿空气带到涡旋内部复合气流将大量暖湿空气带到涡旋内部形成暖心(涡旋内部空气密度减小,形成暖心(涡旋内部空气密度
5、减小,下部海面气压下降)下部海面气压下降)低涡增强低涡增强 复合加强复合加强 。(循环)。(循环)台风台风(typhoon)(typhoon)台风名字台风名字2022-10-64-284.1 风的有关知识4.1.2 两类性质的大风1.台风2022-10-629热热带带气气旋旋按按中中心心附附近近地地面面最最大大风风速速划划分分为为四四个个等等级级 名名称称 属属性性 台风(Typhoon)最大风速出现326 米/秒,也即 12 级以上(64 海里/小时或以上)强热带风暴(Severe tropical storm)最大风速出现 245-326 米/秒,也即风力 10-11 级(48-63 海里
6、/小时)热带风暴(Tropical storm)最大风速出现 17 2-24 4 米/秒,也即风力 8-9 级(34-47海里/小时)热带低压(Tropical depression)最大风速出现17 2 米/秒,也即风力为 6-7 级(22-33海里/小时)4.1 风的有关知识4.1.2 两类性质的大风1.台风2022-10-6304.1 风的有关知识4.1.2 两类性质的大风1.台风2022-10-631冬季冬季:大陆温度低、气压高;大陆温度低、气压高;相邻海洋温度比大陆高、气压低相邻海洋温度比大陆高、气压低 风从大陆吹向海洋风从大陆吹向海洋夏季夏季:大陆温度高、气压低;大陆温度高、气压低
7、;相邻海洋温度比大陆低相邻海洋温度比大陆低 、气压高、气压高 风从海洋吹向大陆风从海洋吹向大陆冬季:大陆冷,海洋暖,风:大陆冬季:大陆冷,海洋暖,风:大陆海洋海洋夏季:大陆热,海洋凉,风:海洋夏季:大陆热,海洋凉,风:海洋大陆大陆4.1 风的有关知识4.1.2 两类性质的大风2.季风2022-10-64-324.1 风的有关知识4.1.3 我国的风气候总况2022-10-62022-10-6334-34风力等级表风力等级表风风力力等等级级名称名称海面状况海面状况海岸渔船征象海岸渔船征象陆地地面物征象陆地地面物征象距地距地10m高处相当风速高处相当风速浪高(浪高(m)一般一般最高最高km/h m
8、ile/hm/s静风静风静静静、烟直上静、烟直上1100.2软风软风0.1 0.1寻常渔船略觉晃动寻常渔船略觉晃动烟能表示方向,但风烟能表示方向,但风向标不能转动向标不能转动15130.31.5轻风轻风0.20.3渔船张帆时,可随风移渔船张帆时,可随风移行每小时行每小时23km人面感觉有风,树叶人面感觉有风,树叶有微响,风向标能转有微响,风向标能转动动611461.63.3微风微风0.61.0渔船渐觉簸动,随风移渔船渐觉簸动,随风移行每小时行每小时56km树叶及微枝摇动不息,树叶及微枝摇动不息,旌旗展开旌旗展开12197103.45.4和风和风1.01.5渔船满帆时倾于一方渔船满帆时倾于一方能
9、吹起地面灰尘和纸能吹起地面灰尘和纸张,树的小枝摇动张,树的小枝摇动202811165.57.94.1 风的有关知识4.1.4风级2022-10-64-35 风力等级表(续)风力等级表(续)5清劲风清劲风2.02.5渔船缩帆(即收渔船缩帆(即收去返之一部)去返之一部)有叶的小树摇摆,内陆有叶的小树摇摆,内陆的水面有小波的水面有小波293817218.010.76强风强风3.04.0渔船加倍缩帆,渔船加倍缩帆,捕鱼须注意风险捕鱼须注意风险大树枝摇动,电线呼呼大树枝摇动,电线呼呼有声,举伞困难有声,举伞困难3949222710.813.87疾风疾风4.05.5渔船停息港中,渔船停息港中,在海上下锚在
10、海上下锚全树摇动,迎风步行感全树摇动,迎风步行感觉不便觉不便5061283313.917.18大风大风5.57.5近港渔船皆停留近港渔船皆停留不出不出微枝折毁,人向前行,微枝折毁,人向前行,感觉阻力甚大感觉阻力甚大6274304017.220.79烈风烈风7.010.0汽船航行困难汽船航行困难烟囱顶部及平瓦移动,烟囱顶部及平瓦移动,小屋有损小屋有损7588414720.824.410狂风狂风9.012.5汽船返航颇危险汽船返航颇危险陆上少见,见时可使树陆上少见,见时可使树木拔起或建筑物吹毁木拔起或建筑物吹毁89102485524.528.411暴风暴风11.516.0汽船遇之极危险汽船遇之极危
11、险陆上很少,有时必有重陆上很少,有时必有重大损毁大损毁103117566328.532.612飓风飓风14海浪滔天海浪滔天陆上绝少,其捣毁力极陆上绝少,其捣毁力极大大118133647132.736.94.1 风的有关知识4.1.4风级2022-10-64-36从国际空间站拍摄的飓风伊万云图最高风速214 km/h(59.4m/s)2022-10-64-37风压定义:当风 以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。风压的产生4.2 风压建筑物建筑物小股气流小股气流流向流向高压气幕高压气幕压力线压力线w w=v v2 2/2/22022-10-64-38dtvdldtdvdAd
12、ldAdw12222/16308.92012018.02mkNvvvgwvdvdw1cv21w21伯努利方程:22vg21v21w初始条件气压为101.325kPa常温150C绝对干燥纬度450海面m1ww0v 时,4.2 风压4.2.1 风压与风速的关系d dl ld dl lw w1 1d dA A(w w1 1+d+dw w1 1)d)dA A4-39基本风压的定义:按规定的地貌、高度、时距等量测的风速所确定的风压所确定的风压称为基本风压。基本风压应符合五个规定:(1)标准高度的规定:一般取为10m。(2)地貌的规定:空旷平坦。A类指近海海面、海岛、海岸、湖岸及沙漠地区;B类指田野、乡村
13、、丛林、丘陵以及房屋 比较稀疏的中小城市郊区;C类指有密集建筑群的中等城市市区;D类指有密集建筑群但房屋较高的大城市市区。4.2 风压4.2.2 基本风压2022-10-64-40(3)公称风速的时距 公称风速公称风速 即一定时间间隔内的平均风速即一定时间间隔内的平均风速dttvv00)(1式中 v0:公称风速;v(t):瞬时风速;:时距。10min1h的平均风速基本稳定,我国取=10min4.2 风压4.2.2 基本风压2022-10-64-41(4)最大风速的样本时间风有它的自然周期,每年季节性的重复一次。一般取一年为统计最大风速的样本时间。(5)基本风速的重现期基本风速出现一次所需要的时
14、间基本风速出现一次所需要的时间 5050年年 =10min1小时,6个样本1天,144个样本年最大风速概率密度分布4.2 风压4.2.2 基本风压每年不超过基本风压的概率或保证率每年不超过基本风压的概率或保证率p p0 0=1-1/=1-1/T T0 0(图中影形面积)(图中影形面积)GB50009-2001 GB50009-2001规定:规定:以当地比较空旷平坦地面上离地以当地比较空旷平坦地面上离地10m10m高高统计所得的统计所得的5050年一遇年一遇10min10min内最大风速内最大风速v v0 0为为标准,按标准,按w w 0 0=v v0 02 2/1600/1600确定。确定。2
15、022-10-64-421.非标准高度换算 实测表明,风速沿高度呈指数函数变化,即:czv sszzvv 2s2s2a0azzvvwzw)()(4.2 风压4.2.3非标准条件下的风速或风压的换算基本风压标准高度(基本风压标准高度(10m10m)与地貌或地面粗糙度有关的指数与地貌或地面粗糙度有关的指数2022-10-64-431.非标准高度换算 4.2 风压4.2.3非标准条件下的风速或风压的换算地区地区 上海近邻上海近邻南京南京广州广州圣路易斯圣路易斯蒙特利尔蒙特利尔上海上海哥本哈根哥本哈根0.160.220.240.250.280.280.34地区地区东京东京基辅基辅伦敦伦敦莫斯科莫斯科列
16、宁格勒列宁格勒纽约纽约巴黎巴黎0.340.360.360.370.410.390.45sszzvv国内外大城市中心及其邻近的实测国内外大城市中心及其邻近的实测 值值 表表4-34-32022-10-64-442.非标准地貌的换算梯度风:不受地表影响,能够在气压梯度作用下自由流动的风。梯度风高度HT与地面的粗糙程度有关,一般为300500m,地面越粗糙,HT越大。右图:不同粗糙度影响下的风剖面 4.2 风压4.2.3非标准条件下的风速或风压的换算2022-10-64-45从图中可知,地面越粗糙,风速变化越慢(从图中可知,地面越粗糙,风速变化越慢(越大),越大),梯度风高度将越高;反之,地面越平坦
17、,风速变化将梯度风高度将越高;反之,地面越平坦,风速变化将越快(越快(越小);梯度风高度将越小。越小);梯度风高度将越小。不同地貌的不同地貌的地貌海面空旷平坦地面城市大城市中心0.10.130.130.180.180.280.280.44HT(m)275325325375375425425500A类B类C类D类4.2 风压4.2.3非标准条件下的风速或风压的换算2022-10-64-46不同地貌在梯度风高处的风速应相同,即:不同地貌在梯度风高处的风速应相同,即:则则或或asaTaa0sTss0zHvzHvasaTasTssazHzHvv00asaTasTsazHzHww22004.2 风压4.
18、2.3非标准条件下的风速或风压的换算2022-10-64-47022.0216.020C0w615.01040010350ww012.0216.020A0w379.11035010350ww地貌A类B类C类D类0.120.1650.220.30HT(m)300350400450不同地貌的03.0216.020D0w318.01045010350wwA类:C类:D类:4.2 风压4.2.3非标准条件下的风速或风压的换算4-480)()(wzwzaz3.风压高度变化系数4.2 风压4.2.3非标准条件下的风速或风压的换算aasaaTasTszzzzHzHz222)(风压高度变化系数风压高度变化系数
19、 z z 地面的粗糙度、温度垂直梯度即地面的粗糙度、温度垂直梯度即任意粗糙度任意高度处的风压与标准高度处的基本风压任意粗糙度任意高度处的风压与标准高度处的基本风压的比值的比值49在大气边界层内,风速随离地面高度而增大在大气边界层内,风速随离地面高度而增大当气压场随高度不变时,风速随高度增大的规律,主要取决于地面当气压场随高度不变时,风速随高度增大的规律,主要取决于地面粗糙度和温度垂直梯度粗糙度和温度垂直梯度 GB50009-2001GB50009-2001地面的粗糙度类别地面的粗糙度类别 A A类类近海海面和海岛、海岸、湖岸及沙漠地区近海海面和海岛、海岸、湖岸及沙漠地区 B B类类田野、乡村、
20、丛林、丘陵、房屋比较稀疏的乡镇和城市郊区田野、乡村、丛林、丘陵、房屋比较稀疏的乡镇和城市郊区 C C类类有密集建筑群的城市市区有密集建筑群的城市市区 D D类类有密集建筑群且房屋较高的城市市区有密集建筑群且房屋较高的城市市区3.风压高度变化系数4.2 风压4.2.3非标准条件下的风速或风压的换算2022-10-650 地面粗糙度类别地面粗糙度类别 粗糙度指数粗糙度指数 梯度风高度梯度风高度H HG G 风压高度变化系数风压高度变化系数 z z A A类类 0.12 300m 1.379(z/10)0.12 300m 1.379(z/10)0.240.24 B B类类 0.16 350m 1.0
21、00(z/10)0.16 350m 1.000(z/10)0.320.32 C C类类 0.22 400m 0.616(z/10)0.22 400m 0.616(z/10)0.44 0.44 D D类类 0.30 450m 0.318(z/10)0.30 450m 0.318(z/10)0.600.60 风压高度变化系数风压高度变化系数 z z(z)=(z)=任意高度处的风压任意高度处的风压w wa a(z)/(z)/基本风压基本风压w w0 0根据离地面或海平面高度、地面粗糙度类别由根据离地面或海平面高度、地面粗糙度类别由GB500092001GB500092001表表7.2.17.2.1确
22、定。确定。3.风压高度变化系数4.2 风压4.2.3非标准条件下的风速或风压的换算2022-10-6512022-10-652 地面粗糙度近似确定原则(无实测粗糙度指数地面粗糙度近似确定原则(无实测粗糙度指数 )以拟建房以拟建房2km2km为半径的迎风半圆范围内的房屋高度和密集度来区分粗糙度类为半径的迎风半圆范围内的房屋高度和密集度来区分粗糙度类别,风向原则上应以该地区最大风的风向为准,但也可取其主导风;别,风向原则上应以该地区最大风的风向为准,但也可取其主导风;以半圆影响范围内建筑物的平均高度以半圆影响范围内建筑物的平均高度h h平均平均来划分地面粗糙度类别,当来划分地面粗糙度类别,当h h
23、平均平均 18m18m,为,为D D类,类,9m9m h h平均平均 18m18m为为C C类,类,h h平均平均 9m9m,为,为B B类。类。影响范围内不同高度的面域可按下述原则确定,即每座建筑物向外延伸距影响范围内不同高度的面域可按下述原则确定,即每座建筑物向外延伸距离为其高度的面域内均为该高度,当不同高度的面域相交时,交叠部分的离为其高度的面域内均为该高度,当不同高度的面域相交时,交叠部分的高度取大者;高度取大者;平均高度平均高度h h平均平均取各面域面积为权数计算。取各面域面积为权数计算。3.风压高度变化系数4.2 风压4.2.3非标准条件下的风速或风压的换算2022-10-64-5
24、34.不同时距的换算由于脉动风的影响,时距越短,公称风速值越大。4.2 风压4.2.3非标准条件下的风速或风压的换算2022-10-64-54 各种不同时距与各种不同时距与1010分钟时距风速的平均比值分钟时距风速的平均比值风速时距1h10min5min2min1min0.5min20s10s5s瞬时统计比值0.9411.071.161.201.261.281.351.391.50影响因素10min平均风速值天气变化4.2 风压4.2.3非标准条件下的风速或风压的换算4.不同时距的换算4-555.不同重现期的换算 不同重现期风压与不同重现期风压与5050年重现期风压的比值年重现期风压的比值重现
25、期T0(年)100503020105310.5r1.1141.000.9160.8490.7340.6190.5350.3530.239429.0lg336.00Tr4.2 风压4.2.3非标准条件下的风速或风压的换算4-56风力:风速风压风力(三个分量)流经任意截面物体所产生的力风效应:由风力产生的结构位移、速度、加速度响应等。在结构物表面沿表面积分4.3结构抗风计算的几个重要概念4.3.1 结构的风力与风效应顺风向力顺风向力P PD D、横风向力横风向力 P PL L 、扭力矩、扭力矩 P PM M 2022-10-64-574.3结构抗风计算的几个重要概念4.3.2 顺风向平均风与脉动风
26、v 顺风向风速时程曲线顺风向风速时程曲线 顺风向的风效应:平均风效应、脉动风效应顺风向的风效应:平均风效应、脉动风效应 脉动风速脉动风速v vf f 短周期成分,周期一般只有几秒钟短周期成分,周期一般只有几秒钟 平平均均风风速速 v长长周周期期成成分分,周周期期一一般般在在 1 10 0m mi in n 以以上上 v vf f v v(t)(t)t t2022-10-64-58风有两种成分构成=平均风+脉动风 图:平均风速和脉动风速fvvv地面粗糙度的影响:地面越粗糙,v越小,vf的幅值越大且频率越高。4.3结构抗风计算的几个重要概念4.3.2 顺风向平均风与脉动风 平均风平均风 忽略其对结
27、构的动力影响忽略其对结构的动力影响 等效为静力作用等效为静力作用 (风的长周期风的长周期 结构的自振周期)结构的自振周期)脉动风脉动风 引起结构动力响应引起结构动力响应 (风的短周期接近结构自振周期)风的短周期接近结构自振周期)引起结构顺风向振动引起结构顺风向振动2022-10-64-59脉动风的特性:幅值特性为一随机过程 vf(t),tT 幅值服从正态分布,其概率密度函数为:222exp21vfvfvvfv:脉动风速的均方差:vfi:vf的一条时程记录曲线dttvTTfiv)(10224.3结构抗风计算的几个重要概念4.3.2 顺风向平均风与脉动风4-60频率特性可用功率谱密度描述功率谱密度
28、的定义:脉动风振动的频率分布deRSivfvf)(21)(dttvtvTRfTfvf)()(1)(0自相关函数:傅立叶变换4.3结构抗风计算的几个重要概念4.3.2 顺风向平均风与脉动风2022-10-64-61DavenportDavenport水平脉动风速功率谱密度水平脉动风速功率谱密度4.3结构抗风计算的几个重要概念4.3.2 顺风向平均风与脉动风2022-10-64-62 对称结构可忽略,但细长的高柔结构须考虑动力效应。对称结构可忽略,但细长的高柔结构须考虑动力效应。1.1.雷诺数雷诺数式中:式中:流体密度:流体密度 :流体粘性系数:流体粘性系数 l l:垂直于流速方向物体截面的最大尺
29、寸。:垂直于流速方向物体截面的最大尺寸。vllvvR2e流体粘性力流体惯性力结构形状雷诺数相同,动力相似层流向湍流转换动粘性x动力相似定律4.3结构抗风计算的几个重要概念4.3.3 横风向风振4-63对于空气:对于空气:R Re e=69000=69000vl vl=69000vB=69000vB 如果如果R Re e1/100010001000,则以惯性力为主,为低粘性流体。,则以惯性力为主,为低粘性流体。2.Strouhal2.Strouhal数数图:旋涡的产生与脱落图:旋涡的产生与脱落sm10145.0 x24Karman涡街现象4.3结构抗风计算的几个重要概念4.3.3 横风向风振4-
30、64 气流沿上风面气流沿上风面ABAB速度逐渐增大,之后沿下风面速度逐渐增大,之后沿下风面BCBC速度逐渐减速度逐渐减小。由于在边界层内气流对柱体表面的摩擦,气流在小。由于在边界层内气流对柱体表面的摩擦,气流在BCBC中间某点中间某点S S处停滞,生成旋涡,并以一定的周期(或频率处停滞,生成旋涡,并以一定的周期(或频率fs fs)脱落。若和结构)脱落。若和结构横向周期接近,即产生横风向风振横向周期接近,即产生横风向风振StrouhalStrouhal数定义数定义:D D:圆柱直径:圆柱直径vDfSst4.3结构抗风计算的几个重要概念4.3.3 横风向风振2022-10-64-65实验表明:实验
31、表明:当当3.0 x103.0 x102 2 R Re e 3.0 x103.0 x105 5时(亚临界范围),时(亚临界范围),S St t0.2;0.2;当当3.0 x103.0 x105 5 R Re e 0.25s0.25s的工程结构(房屋、屋盖及各种的工程结构(房屋、屋盖及各种高耸结构)高耸结构)高度高度H H 30m 30m且高宽比且高宽比H H/B B 1.5 1.5的高柔房屋的高柔房屋考虑风压脉动对结构发生顺风向风振的影响考虑风压脉动对结构发生顺风向风振的影响4.4 顺风向结构风效应4.4.3 顺风向总风效应2022-10-64-89(GB50009-2001)脉动增大系数 建
32、筑结构荷载规范:4.4 顺风向结构风效应4.4.3 顺风向总风效应2022-10-64-904.4 顺风向结构风效应4.4.3 顺风向总风效应2022-10-64-911()sin2zzH11()z第 振 型 函 数0.71()tan4zzH234141()233zzzzHHH对于低层建筑结构(剪切型结构)对于高层建筑结构(弯剪型结构)对于高耸结构(弯曲型结构)00.510.20.40.60.81Eq.(4-56a)Eq.(4-56b)Eq.(4-56c)第1振型函数z/Hx4.4 顺风向结构风效应4.4.3 顺风向总风效应2022-10-64-924.4 顺风向结构风效应4.4.3 顺风向总
33、风效应2022-10-64-932022-10-64-94示例 已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变。H=100 m,B=33m,地面粗糙度指数a=0.22,基本风压按粗糙度指数为s=0.16的地貌上离地面高度zs=10m处的风速确定,基本风压值为w0=0.44kN/m2。结构的基本自振周期T1=2.5s。求风产生的建筑底部弯矩。解:1.为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m高,取其中点位置的风载值作为该区段的平均风载值,如后页中图所示。4.4 顺风向结构风效应4.4.3 顺风向总风效应2022-10-64-952.2.体型系数体型系数 s s=1.3=1.
34、3。3.3.风压高度变化系数为:风压高度变化系数为:在各区段中点高度处的风压高度在各区段中点高度处的风压高度变化系数值分别为:变化系数值分别为:z1z1=0.62 =0.62 z2z2=1.00 =1.00 z3z3=1.25=1.25 z4z4=1.45 =1.45 z5z5=1.62=1.6244.0z10z615.0)z(风载计算简图4.4 顺风向结构风效应4.4.3 顺风向总风效应2022-10-64-96 4.4.确定风振系数。由确定风振系数。由 查表得脉动增大系数查表得脉动增大系数 =1.51=1.51 计算各区段中点高度处的第计算各区段中点高度处的第1 1振型振型 相对位移相对位
35、移 1111=0.16 =0.16 1212=0.35 =0.35 1313=0.53=0.53 1414=0.70 =0.70 1515=0.89=0.89222210/71.15.244.0mskNTw4.4 顺风向结构风效应4.4.3 顺风向总风效应4-97因建筑的高宽比因建筑的高宽比H/B=3H/B=3,查表得脉动影响系数,查表得脉动影响系数:=0.49=0.49。代入得各区段中点高度处风振系数:代入得各区段中点高度处风振系数:1 1=1.19 =1.19 2 2=1.26 =1.26 3 3=1.31 =1.31 4 4=1.36 =1.36 5 5=1.41=1.415.5.按式(
36、按式(4-454-45)计算各区段中点高度处的风压值)计算各区段中点高度处的风压值21mkN42.044.062.03.119.1w22mkN72.044.000.13.126.1w4.4 顺风向结构风效应4.4.3 顺风向总风效应4-986.6.根据图所示的计算简图,由风产生的建筑筑底部根据图所示的计算简图,由风产生的建筑筑底部弯矩为:弯矩为:25mkN31.144.062.13.141.1w3320)9031.17013.15094.13072.01042.0(M23mkN94.144.025.13.131.1w24mkN13.144.045.13.136.1wmkN1078.15问题不考
37、虑顺风向脉动影响?4.4 顺风向结构风效应4.4.3 顺风向总风效应4-99 速度为v的风流经任意截面物体,都将产生三个力,即物体单位长度上的顺风向力PD、横风向力PL以及扭矩力PM:D D结构的截面尺寸,取为垂直于风向的最大尺寸;D D 顺风向风力系数,为迎风面和背风面风荷载体型系数 之和;L L、MM分别为横风向风力和扭转力系数。DvPDD2214.5 横风向结构风效应4.5.1 流经任意截面物体的风力DvPLL221DvPMM221风PDPLPM2022-10-64-100 L L横风向风力系数,与雷诺数横风向风力系数,与雷诺数R Re e有关有关亚临界范围(亚临界范围(3x103x10
38、2 2RRe e 3x10 3x105 5 )L L=0.20.6=0.20.6超临界范围(超临界范围(3x103x105 5RRe e 3x10 3x106 6)L L不确定(随机)不确定(随机)跨临界范围(跨临界范围(R Re e 3x10 3x106 6 )L L=0.150.2=0.150.24.5 横风向结构风效应4.5.2结构横风向风力tzDzvtzPsLLsin)()(21),(2)()(22zDzvSftss 跨临界范围、亚临界范围的结构横风向作用具有周期性,结跨临界范围、亚临界范围的结构横风向作用具有周期性,结构横向风作用力构横向风作用力 风旋涡脱落圆频率风旋涡脱落圆频率 S
39、t St斯脱罗哈数,对圆形截面结构取斯脱罗哈数,对圆形截面结构取0.20.22022-10-6101 结构横风向共振现象结构横风向共振现象 横风向风作用力频率(横风向风作用力频率(f fs s )与结构横向自振基本频率()与结构横向自振基本频率(f f1 1)接近时,结构)接近时,结构横向产生共振反应横向产生共振反应 锁住(锁住(look-inlook-in)区域)区域 风旋涡脱落频率风旋涡脱落频率f fs s保持常数(保持常数(=结构横向自振频率结构横向自振频率f f1 1)的风速区域)的风速区域 跨临界范围(确定性振动)跨临界范围(确定性振动)锁住区域锁住区域:P:PL L(z)sin(z
40、)sin 1 1t t 其它区域:其它区域:P PL L(z)sin(z)sin s s(z)t(z)t 亚临界范围(确定性振动)亚临界范围(确定性振动)P PL L(z)sin(z)sin s s(z)t(z)t 超临界范围(随机振动)超临界范围(随机振动)P PL L(z)(z)f f(t)(t)4.5 横风向结构风效应4.5.2结构横风向风力2022-10-64-102圆形平面结构mL与Re关系结构横风向共振现象及锁住区域4.5 横风向结构风效应4.5.2结构横风向风力频率频率自振自振频率频率风速风速锁定现象锁定现象锁定区锁定区旋涡脱落频率旋涡脱落频率2022-10-64-103细长结构
41、横风向风力分布4.5 横风向结构风效应4.5.2结构横风向风力2022-10-64-104 一般情况下,L 0.4,而D 大于L 的3倍以上,故一般情况下,结构横风向效应与顺风向效应相比可以忽略。然而,在亚临界范围,特别在跨临界范围,横向风力为周期性荷载,即:其中tzPtzPsLLsin)(),(zDzvSftss)(224.5 横风向结构风效应4.5.3结构横风向风效应2022-10-6 跨临界的强风共振引起在z高度处振型j的等效风荷载按下列公式确定2crjj()v(z)()/12800djjPzD z()j j计算系数,按表计算系数,按表3-143-14确定;确定;j j(z)(z)在在z
42、 z高度处结构的高度处结构的j j振型系数;振型系数;j j第第j j振型的阻尼比;对第一振型,钢结构取振型的阻尼比;对第一振型,钢结构取0.010.01,有填充,有填充材料的房屋钢结构取材料的房屋钢结构取0.020.02,混凝土结构取,混凝土结构取0.050.05,对于高振型的,对于高振型的阻尼比,若无实测资料,可近似按第一振型取;阻尼比,若无实测资料,可近似按第一振型取;4.5 横风向结构风效应4.5.3结构横风向风效应4-105表3-14中的H1临界风速的起始点高度,可按下式计算:/11HcrvvHH式中:式中:为地面粗糙度指数,对为地面粗糙度指数,对A A、B B、C C、D D四类分
43、别取四类分别取0.120.12、0.160.16、0.220.22、和、和0.300.30;v vH H结构顶部风速,结构顶部风速,m/sm/s。校核横风向风振时所考虑的高振型序号不大于校核横风向风振时所考虑的高振型序号不大于4 4,对于一般的,对于一般的悬臂型结构,可只取第一或第二振型。悬臂型结构,可只取第一或第二振型。上述公式仅适用于圆形截面的结构,对于非圆形截面结构,上述公式仅适用于圆形截面的结构,对于非圆形截面结构,等效风荷载宜通过风洞试验确定。等效风荷载宜通过风洞试验确定。4.5 横风向结构风效应4.3.5.3结构横风向风效应4-1064-107结构横风向共振计算简图及等效共振风力共
44、振风速高度1.3倍共振风速高度但小于H4.5 横风向结构风效应4.5.3结构横风向风效应2022-10-64-108当当 s s与结构基本频率与结构基本频率 接近时,结构将产生共振。接近时,结构将产生共振。共振风速为:共振风速为:共振位移反应为:共振位移反应为:此时,横风向共振力为:此时,横风向共振力为:zDzvSftss)(22212112211101()()()2()2()()HLHHvz B zz dzy zm zz dz 2111()()()LPzm zy z1)(5)(fzDSfzDvtscRe=69000vB4.5 横风向结构风效应4.5.3结构横风向风效应4-109已知:钢筋砼烟
45、囱已知:钢筋砼烟囱H=100m,H=100m,顶端直径顶端直径5m5m,底部直径,底部直径10m10m,基本频率,基本频率f f1 1=1Hz,10=1Hz,10米高度处基本风速米高度处基本风速v v0 0=25m/s=25m/s 问:烟囱是否发生横向风共振?问:烟囱是否发生横向风共振?解:解:烟囱顶点风速为:烟囱顶点风速为:烟囱顶点共振风速为:烟囱顶点共振风速为:共振风速下烟囱顶点处雷诺数:共振风速下烟囱顶点处雷诺数:属跨临界范围,横风向会发生共振。属跨临界范围,横风向会发生共振。sm3.35)10100(25)10H(vv15.015.00HH1cvsm25155f)H(B5v66e105
46、.31063.852569000vB69000R4.5 横风向结构风效应4.5.3结构横风向风效应4-110结构抗风设计:将结构横风向风效应与顺风向风效应叠加22ACSSS4.5 横风向结构风效应4.5.4结构总风效应22dLdDsSSSS+=考虑顺风向动力作用效应(脉动效应)与横风向动力作用效应考虑顺风向动力作用效应(脉动效应)与横风向动力作用效应(风振效应)的最大值不一定在同一时刻发生(风振效应)的最大值不一定在同一时刻发生 采用平方和开方近似估算总的风动力效应采用平方和开方近似估算总的风动力效应结构总风效应结构总风效应结构顺风向静力效应结构顺风向静力效应结构顺风向脉动效应结构顺风向脉动效
47、应结构横风向风振效应结构横风向风振效应横风向风荷载效应横风向风荷载效应顺风向风荷载效应顺风向风荷载效应2022-10-64-111v驰振(驰振(gallopinggalloping):):在某些情况下,外界激励可能产生负阻尼成分,当负在某些情况下,外界激励可能产生负阻尼成分,当负阻尼大于正阻尼时,结构振动将不断加剧,直到达到阻尼大于正阻尼时,结构振动将不断加剧,直到达到极限破坏。这种现象称为驰振。极限破坏。这种现象称为驰振。非圆截面才可能发生驰振。非圆截面才可能发生驰振。也称为横风向弯曲单自由度振动也称为横风向弯曲单自由度振动4.5 横风向结构风效应4.5.5结构横风向驰振2022-10-64
48、-112v颤振(颤振(flutterflutter):当物体截面的旋转中心与空气动力):当物体截面的旋转中心与空气动力的作用中心不重合时,将产生截面的平移和扭转耦合的作用中心不重合时,将产生截面的平移和扭转耦合振动,对于这种振动形式,也会发生不稳定振动现象振动,对于这种振动形式,也会发生不稳定振动现象,称其为颤振。一般出现在桥梁结构。风作用下产生,称其为颤振。一般出现在桥梁结构。风作用下产生的结构扭转振动。的结构扭转振动。v抖振:在城市中心比较密集的高层建筑中,当一个结抖振:在城市中心比较密集的高层建筑中,当一个结构处于另一个结构的卡门涡道中时,后面的结构自振构处于另一个结构的卡门涡道中时,后
49、面的结构自振频率接近前面结构漩涡脱落后产生的,对它而言是顺频率接近前面结构漩涡脱落后产生的,对它而言是顺风向风的频率时,抖振就会发生。风向风的频率时,抖振就会发生。4.5 横风向结构风效应4.5.6颤振和抖振2022-10-6例题例题 某某1111层钢砼框架剪力墙结构,地处市郊,基层钢砼框架剪力墙结构,地处市郊,基本风压本风压0.5kN/m0.5kN/m2 2,结构总高度,结构总高度33.2m33.2m,底层,底层3.2m3.2m,其余层,其余层3m3m,试求结构横向总风载。已,试求结构横向总风载。已知结构基本自振周期知结构基本自振周期0.556s0.556s。平面如下图,开。平面如下图,开间
50、间75007500,进深,进深6600mm6600mm,走廊,走廊2400mm2400mm,翼墙,翼墙3000mm3000mm(从轴线算起),结构轴线总长(从轴线算起),结构轴线总长60m60m,总宽总宽15.6m15.6m2022-10-6113 2022-10-6114本例题平面为矩形本例题平面为矩形 ,迎风面背风面风载体型系数之和,迎风面背风面风载体型系数之和风压作用方向与计算方向夹角风压作用方向与计算方向夹角 0 0所以沿建筑高度方向每米风载所以沿建筑高度方向每米风载由于本建筑高度超过由于本建筑高度超过30m30m,高宽比大于,高宽比大于1.51.5,所以还应考虑风,所以还应考虑风振系
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。