ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:794.08KB ,
文档编号:3924812      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3924812.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(勾股定理复习课件(新).ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

勾股定理复习课件(新).ppt

1、勾股定理复习课件(新)1、进一步理解掌握勾股定理及它的逆定理,、进一步理解掌握勾股定理及它的逆定理,巩固勾股定理的证明方法。巩固勾股定理的证明方法。2、能运用勾股定理和它的逆定理解决一些实、能运用勾股定理和它的逆定理解决一些实际问题。在解决问题的过程中体会如何将实际问题。在解决问题的过程中体会如何将实际问题转化为数学问题。际问题转化为数学问题。3、记住几组常见的勾股数。、记住几组常见的勾股数。学习目标:学习目标:一、知识要点勾股定理勾股定理 例:在RtABC中,C=90.(1)若a=3,b=4,则c=;(2)若c=34,a:b=8:15,则 a=,b=;51630ABCabc勾股逆定理勾股逆定

2、理 例例1:、ABC三边三边a,b,c为边向为边向外作正方形,正三角形,以三外作正方形,正三角形,以三边为直径作半圆,若边为直径作半圆,若S1+S2=S3成成立,则立,则三角形三角形是直角三角形吗?是直角三角形吗?ACabcS1S2S3BABCabcS1S2S3思维训练思维训练 吗?说明理由ABC是直角三角形 n是正整数),m,n,(m且cb,a,分别为ABC三角形的三边 1、已知 n nm m=c c2 2m mn n,=b b,n n-m m =a a2 22 22 22 2分析:分析:先来判断先来判断a,b,c三边哪条最长,三边哪条最长,可以代可以代m,n为满足条件的特殊值来试,为满足条

3、件的特殊值来试,m=5,n=4.则则a=9,b=40,c=41,c最大。最大。2222222222)()2()(cnmmnnmba 解:ABC是直角三角形是直角三角形练一练练一练 1.已知三角形的三边长为已知三角形的三边长为 9,12,15,则这个三角形的最大角是则这个三角形的最大角是 度度;2.若若ABC中中,AB=5,BC=12,AC=13,则则AC边上的高长为边上的高长为 ;例例2906013,5 2 3,ABCABCa b cCBAABCABC 2222中,的对边分别是下列判断错误的是()A.如果则 ABC是直角三角形B.如果c=b-a,则 ABC是直角三角形,且C=90C.如果(c+

4、a)(c-a)=b,则 ABC是直角三角形D.如果:则是直角三角3B勾股数勾股数 例例3请完成以下未完成的勾股数:请完成以下未完成的勾股数:(1)8、15、_;(2)10、26、_ (3)7、_、25172424例例4.4.观察下列表格:观察下列表格:请你结合该表格及相关知识,求出请你结合该表格及相关知识,求出b b、c c的值的值.即即b=b=,c=c=_ _ 8485例例:、如图,四边形、如图,四边形ABCD中,中,AB3,BC=4,CD=12,AD=13,B=90,求四,求四边形边形ABCD的面积的面积DBAC341213变式变式 有一块田地的形状和尺寸有一块田地的形状和尺寸如图所示,试

5、求它的面积。如图所示,试求它的面积。121334ABCD5 专题一专题一 分类思想分类思想 1.直角三角形中,已知两边长是直角边、直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。斜边不知道时,应分类讨论。2.当已知条件中没有给出图形时,应认真当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。读句画图,避免遗漏另一种情况。2.三角形三角形ABC中中,AB=10,AC=17,BC边上边上的高线的高线AD=8,求求BCDDABC 1.已知已知:直角三角形的三边长分别是直角三角形的三边长分别是 3,4,X,则则X2=25 或或7ABC1017817108 专题二专题二 方程思

6、想方程思想 直角三角形中,当无法已知两边求第三直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。的等量关系,利用勾股定理列方程。例例1:在我国古代数学著作九章算术中记载了一道有趣的问题在我国古代数学著作九章算术中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为这个问题意思是:有一个水池,水面是一个边长为10尺的正方形尺的正方形,在水池的中央有一根新生的芦苇,它高出水面在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的

7、深度苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?和这根芦苇的长度各是多少?DABC解解:设水池的深度设水池的深度AC为为X米米,则芦苇高则芦苇高AD为为(X+1)米米.根据题意得根据题意得:BC2+AC2=AB252+X2=(X+1)225+X2=X2+2X+1 X=12 X+1=12+1=13(米)答答:水池的深度为水池的深度为12米米,芦苇高为芦苇高为13米米.例例2:如图,铁路上如图,铁路上A,B两点相距两点相距25km,C,D为两庄,为两庄,DAAB于于A,CBAB于于B,已知,已知DA=15km,CB=10km,现在要在铁路现在要在铁路AB上建一

8、个土特产品收购站上建一个土特产品收购站E,使得,使得C,D两村到两村到E站的距离相等,则站的距离相等,则E站应建在离站应建在离A站多少站多少km处?处?CAEBDx25-x解:解:设设AE=x km,根据勾股定理,得根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2又又 DE=CE AD2+AE2=BC2+BE2即:即:152+x2=102+(25-x)2答:答:E站应建在离站应建在离A站站10km处。处。X=10则则 BE=(25-x)km15101.小东拿着一根长竹竿进一个宽为米的小东拿着一根长竹竿进一个宽为米的城门,他先横拿着进不去,又竖起来拿,城门,他先横拿着进不去,又竖

9、起来拿,结果竹竿比城门高米,当他把竹竿斜着结果竹竿比城门高米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长时,两端刚好顶着城门的对角,问竹竿长多少?多少?x1m(x+1)3在一棵树的在一棵树的10米高处米高处B有两只猴子,其有两只猴子,其中一只猴子爬下树走到离树中一只猴子爬下树走到离树20米的池塘米的池塘A,另一只猴子爬到树顶,另一只猴子爬到树顶D后直接跃向后直接跃向池塘的池塘的A处,如果两只猴子所经过距离处,如果两只猴子所经过距离相等,试问这棵树有多高?相等,试问这棵树有多高?.DBCA例4:如图,D(2,1),以OD为一边画等腰三角形,并且使另一个顶点在x轴上,这样的等腰三角形能画多

10、少个?写出落在x轴上的顶点坐标.xy(2,1)1255(5,0)(5,0)5(4,0)xx2x 2221(2)xx22144xxx54x 解解得得5(,0)4练习:1.一架一架5长的梯子,斜立靠在一竖直的墙长的梯子,斜立靠在一竖直的墙上,这是梯子下端距离墙的底端上,这是梯子下端距离墙的底端3,若梯子,若梯子顶端下滑了顶端下滑了1,则梯子底端将外移(则梯子底端将外移()2.如图,要在高如图,要在高3m,斜坡斜坡5m的楼梯表面铺的楼梯表面铺地毯,地毯的长度至少需(地毯,地毯的长度至少需()米)米3.把直角三角形两条直角边把直角三角形两条直角边同时扩大到原来的同时扩大到原来的3倍,则其倍,则其斜边(

11、斜边()A.不变不变 B.扩大到原来的扩大到原来的3倍倍C.扩大到原来的扩大到原来的9倍倍 D.减小到原来的减小到原来的1/3ABC17B 专题三专题三 折叠折叠 折叠和轴对称密不可分,利用折叠前后折叠和轴对称密不可分,利用折叠前后图形全等,找到对应边、对应角相等便可图形全等,找到对应边、对应角相等便可顺利解决折叠问题顺利解决折叠问题例例1、如图,一块直角三角形的纸片,两如图,一块直角三角形的纸片,两直角边直角边AC=6,BC=8。现将直角边。现将直角边AC沿直线沿直线AD折叠,使它落在斜边折叠,使它落在斜边AB上,上,且与且与AE重合,求重合,求CD的长的长 ACDBE第8题图x6x8-x4

12、68例例2:折叠矩形折叠矩形ABCD的一边的一边AD,点点D落在落在BC边上的点边上的点F处处,已知已知AB=8CM,BC=10CM,求线段求线段CF 和线段和线段EC的长的长.ABCDE F81010X8-X48-X6 1.几何体的表面路径最短的问题,一般展几何体的表面路径最短的问题,一般展开表面成平面。开表面成平面。2.利用两点之间线段最短,及勾股定理利用两点之间线段最短,及勾股定理求解。求解。专题四专题四 展开思想展开思想例例1:1:如图如图,一圆柱高一圆柱高8cm,8cm,底面半径底面半径2cm,2cm,一只蚂蚁从点一只蚂蚁从点A A爬到点爬到点B B处吃食处吃食,要爬行的最短路程要爬

13、行的最短路程(取取3 3)是)是()()A.20cm B.10cm C.14cm D.A.20cm B.10cm C.14cm D.无法确定无法确定 BB8OA2蛋糕ACB周长的一半周长的一半例例2 如图:正方体的棱长为如图:正方体的棱长为cm,一只,一只蚂蚁欲从正方体底面上的顶点蚂蚁欲从正方体底面上的顶点A沿正方沿正方体的表面到顶点体的表面到顶点C处吃食物,那么它需处吃食物,那么它需要爬行的最短路程的长是多少?要爬行的最短路程的长是多少?ABCDABCD16例例3 3、如图是一个三级台阶,它的每一级的长宽和高分别、如图是一个三级台阶,它的每一级的长宽和高分别为为20dm20dm、3dm3dm

14、、2dm,A和和B是这个台阶两个相对的端点,是这个台阶两个相对的端点,A点有一只蚂蚁,想到点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着点去吃可口的食物,则蚂蚁沿着台阶面爬到台阶面爬到B点最短路程是多少?点最短路程是多少?20203 32 2AB32323 AB2=AC2+BC2=625,AB=25.例例4:如图,长方体的长为如图,长方体的长为15 cm,宽为,宽为 10 cm,高,高为为20 cm,点,点B离点离点C 5 cm,一只蚂蚁如果要沿着长方一只蚂蚁如果要沿着长方体的表面从点体的表面从点 A爬到点爬到点B,需要爬行的最短距离是多需要爬行的最短距离是多少?少?1020BAC155BA

15、C1551020B5B51020ACEFE1020ACFAECB2015105 1.几何体的内部路径最值的问题,一般画几何体的内部路径最值的问题,一般画出几何体截面出几何体截面 2.利用两点之间线段最短,及勾股定理利用两点之间线段最短,及勾股定理求解。求解。专题五专题五 截面中的勾股定理截面中的勾股定理小明家住在小明家住在18层的高楼,一天,他与妈妈去买竹竿。层的高楼,一天,他与妈妈去买竹竿。买最长买最长的吧!的吧!快点回家,快点回家,好用它凉衣好用它凉衣服。服。糟糕,太糟糕,太长了,放长了,放不进去。不进去。如果电梯的长、宽、高分别是如果电梯的长、宽、高分别是1.5米、米、1.5米、米、2.

16、2米,那么,米,那么,能放入电梯内的竹竿的最大长度大约是多少米?你能估计出能放入电梯内的竹竿的最大长度大约是多少米?你能估计出小明买的竹竿至少是多少米吗?小明买的竹竿至少是多少米吗?1.5米1.5米2.2米1.5米1.5米xx2.2米ABCX2=1.52+1.52=4.5AB2=2.22+X2=9.34AB3米米 一种盛饮料的圆柱形杯,测得内部底面半径为一种盛饮料的圆柱形杯,测得内部底面半径为2.5,高为,高为12,吸管放进杯里,杯口外面至,吸管放进杯里,杯口外面至少要露出少要露出4.6,问吸管要做多长?,问吸管要做多长?练习:练习:1 1、通过这节课的学习活动你有哪些收获?、通过这节课的学习活动你有哪些收获?2 2、对这节课的学习,你还有什么想法吗?、对这节课的学习,你还有什么想法吗?

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|