ImageVerifierCode 换一换
格式:PPTX , 页数:72 ,大小:2.92MB ,
文档编号:3925319      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3925319.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(新高考数学复习考点知识讲义课件38平面向量基本定理及坐标表示.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

新高考数学复习考点知识讲义课件38平面向量基本定理及坐标表示.pptx

1、5.2平面向量基本定理及坐标表示第五章平面向量、复数新高考数学复习考点知识讲义课件考试要求1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理平面向量基本定理如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的任一向量a,一对实数1,2,使a_.我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一个 .2.平面向量的正交分解平面向量的正交分解把一个向量分解为两个 的向量,叫做把向量作正交分解.不共线有且只有基底知识梳理互相垂直1e12e23.平面向量的

2、坐标运算平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a(x1,y1),b(x2,y2),则ab ,ab ,a ,|a|.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标.设A(x1,y1),B(x2,y2),则 ,|.4.平面向量共线的坐标表示平面向量共线的坐标表示设a(x1,y1),b(x2,y2),其中b0,则ab .(x1x2,y1y2)(x1x2,y1y2)(x1,y1)(x2x1,y2y1)x1y2x2y101.若两个向量存在夹角,则向量的夹角与直线的夹角一样吗?为什么?微思考提示不一样.因为向量有方向,而直线不考虑方向.当向量的夹角为直角或锐角时

3、,与直线的夹角相同.当向量的夹角为钝角或平角时,与直线的夹角不一样.2.平面内的任一向量可以用任意两个非零向量表示吗?提示不一定.两个向量只有不共线时,才能作为一组基底表示平面内的任一向量.题组一思考题组一思考辨析辨析基础自测1.判断下列结论是否正确(请在括号中打“”或“”)(1)平面内的任意两个向量都可以作为一组基底.()(2)若a,b不共线,且1a1b2a2b,则12,12.()(3)若a(x1,y1),b(x2,y2),则ab的充要条件可表示成 ()(4)平面向量不论经过怎样的平移变换之后其坐标不变.()题组二教材题组二教材改编改编2.(多选)如图所示,C,D是线段AB上的两个三等分点,

4、则下列关系式正确的是3.已知ABCD的顶点A(1,2),B(3,1),C(5,6),则顶点D的坐标为_.(1,5)得(4,1)(5x,6y),_.题组三易错自纠题组三易错自纠5.(多选)设O是平行四边形ABCD的两条对角线AC,BD的交点,其中可作为这一个平行四边形所在平面的一个基底的是解析平面内任意两个不共线的向量都可以作为基底,如图,6.(多选)已知向量a(1,2),|b|4|a|,ab,则b可能是A.(4,8)B.(4,8)C.(4,8)D.(4,8)TIXINGTUPO HEXINTANJIU2题型突破 核心探究题型一平面向量基本定理的应用师生共研(1)应用平面向量基本定理表示向量的实

5、质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每个基底下的分解都是唯一的.思维升华因为a与b不共线,所以由平面向量基本定理,题型二平面向量的坐标运算师生共研解由已知得a(5,5),b(6,3),c(1,8).3ab3c3(5,5)(6,3)3(1,8)(1563,15324)(6,42).(2)求满足ambnc的实数m,n;解方法一mbnc(

6、6mn,3m8n),方法二abc0,abc,又ambnc,mbncbc,解设O为坐标原点,M(0,20).引申探究1.本例中条件不变,如何利用向量求线段AB中点的坐标?解设O为坐标原点,P(x,y)是线段AB的中点,2.本例中条件不变,如何利用向量求ABC的重心G的坐标?解设AB的中点为P,O为坐标原点,向量的坐标运算主要是利用向量的加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.思维升华(4,7)设点B为(x,y),则(2x,3y)2(1,2),(2)如图所示,以e1,e2为基底,则a_.2e1e2解析以e1的起点为坐标原点,e

7、1所在直线为x轴建立平面直角坐标系,则e1(1,0),e2(1,1),a(3,1),令axe1ye2,即(3,1)x(1,0)y(1,1),题型三向量共线的坐标表示多维探究命题点1利用向量共线求参数例3(1)(2020惠州调研)已知向量a(2,1),b(x,1),且ab与b共线,则x的值为_.2解析a(2,1),b(x,1),ab(2x,2),又ab与b共线,(2x)(1)2x0,x2.(2)(2018全国)已知向量a(1,2),b(2,2),c(1,).若c(2ab),则_.解析由题意得2ab(4,2),因为c(1,),且c(2ab),所以420,命题点2利用向量共线求向量或点的坐标解析因为

8、点O(0,0),A(0,5),B(4,3),设M的坐标为(x,y),平面向量共线的坐标表示问题的解题策略(1)如果已知两向量共线,求某些参数的取值时,利用“若a(x1,y1),b(x2,y2),则ab的充要条件是x1y2x2y1”.(2)在求与一个已知向量a共线的向量时,可设所求向量为a(R).思维升华跟踪训练3(2020山东省文登二中模拟)平面内给定三个向量a(3,2),b(1,2),c(4,1).(1)若(akc)(2ba),求实数k;解akc(34k,2k),2ba(5,2),由题意得2(34k)(5)(2k)0,解设d(x,y),则dc(x4,y1),d的坐标为(3,1)或(5,3).

9、KESHIJINGLIAN3课时精练1.在如图所示的平面直角坐标系中,向量 的坐标是A.(2,2)B.(2,2)C.(1,1)D.(1,1)12345678910 11 12 13 14 15 16基础保分练解析因为A(2,2),B(1,1),12345678910 11 12 13 14 15 16解析对于A,C,D都有e1e2,所以只有B成立.2.在下列向量组中,可以把向量a(3,2)表示出来的是A.e1(0,0),e2(1,2)B.e1(1,2),e2(5,2)C.e1(3,5),e2(6,10)D.e1(2,3),e2(2,3)12345678910 11 12 13 14 15 16

10、3.(2020太原模拟)设向量a(m,2),b(1,m1),且a与b的方向相反,则实数m的值为A.2 B.1C.2或1 D.m的值不存在解析向量a(m,2),b(1,m1),因为ab,所以m(m1)21,解得m2或m1.当m1时,a(1,2),b(1,2),a与b的方向相同,舍去;当m2时,a(2,2),b(1,1),a与b的方向相反,符合题意,故选A.12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16解析各选项代

11、入验证,若A,B,C三点不共线即可构成三角形.假设A,B,C三点共线,则1(m1)2m0,即m1.所以只要m1,A,B,C三点就可构成三角形,故选ABD.12345678910 11 12 13 14 15 166.(多选)设a是已知的平面向量且a0,关于向量a的分解,有如下四个命题(向量b,c和a在同一平面内且两两不共线),则真命题是A.给定向量b,总存在向量c,使abcB.给定向量b和c,总存在实数和,使abcC.给定单位向量b和正数,总存在单位向量c和实数,使abcD.给定正数和,总存在单位向量b和单位向量c,使abc12345678910 11 12 13 14 15 16解析向量b,

12、c和a在同一平面内且两两不共线,b0,c0,给定向量a和b,只需求得其向量差ab,即为所求的向量c,故总存在向量c,使abc,故A正确;当向量b,c和a在同一平面内且两两不共线时,向量b,c可作基底,由平面向量基本定理可知结论成立,故B正确;取a(4,4),2,b(1,0),无论取何值,向量b都平行于x轴,而向量c的模恒等于2,12345678910 11 12 13 14 15 16要使abc成立,根据平行四边形法则,向量c的纵坐标一定为4,故找不到这样的单位向量c使等式成立,故C错误;因为和为正数,所以b和c代表与原向量同向的且有固定长度的向量,这就使得向量a不一定能用两个单位向量的组合表

13、示出来,故不一定能使abc成立,故D错误.故选AB.12345678910 11 12 13 14 15 167.(2021合肥质检)已知向量a(1,3),b(2,k),且(a2b)(3ab),则实数k_.6解析a2b(3,32k),3ab(5,9k),由题意可得,3(9k)5(32k),解得k6.12345678910 11 12 13 14 15 168.设向量a(3,4),向量b与向量a方向相反,且|b|10,则向量b的坐标为_.解析不妨设向量b的坐标为b(3m,4m)(m0),(6,8)解得m2(m2舍去),故b(6,8).12345678910 11 12 13 14 15 1612

14、345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 1611.已知a(1,0),b(2,1),(1)当k为何值时,kab与a2b共线;解kabk(1,0)(2,1)(k2,1),a2b(1,0)2(2,1)(5,2).kab与a2b共线,2(k2)(1)50,12345678910 11 12 13 14 15 16即2a3b(amb),8m3(2m1)0,即2m30,12345678910 11 12 13 14 15 1

15、612345678910 11 12 13 14 15 16解方法一如图,作平行四边形OB1CA1,所以B1OC90.所以4,2,所以6.12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16方法二以O为原点,建立如图所示的平面直角坐标系,所以6.12345678910 11 12 13 14 15 16技能提升练12345678910 11 12 13 14 15 16解析如图,以A为原点,AB所在直线为x轴,AC所在直线为y轴建立平面直角坐标系,则B点的坐标为(1,0),C点的坐标为(0,2),12345678910 11 12

16、 13 14 15 16解析设圆的半径为r,又BAC的平分线交ABC的外接圆于点D,则根据圆的性质得BDCDAB,所以四边形ABDO为菱形,12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16拓展冲刺练15.若,是平面内一组基底,向量xy(x,yR),则称(x,y)为向量在基底,下的坐标,现已知向量a在基底p(1,1),q(2,1)下的坐标为(2,2),则a在基底m(1,1),n(1,2)下的坐标为_.(0,2)12345678910 11 12 13 14 15 16解析因为a在基底p,q下的坐标为(2,2),所以a2p2q(2,4),令axmyn(xy,x2y),所以a在基底m,n下的坐标为(0,2).12345678910 11 12 13 14 15 1616.如图,已知ABC中,AB2,AC1,BAC120,AD为角平分线.(1)求AD的长度;12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 16因为E,D,F三点共线,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|