ImageVerifierCode 换一换
格式:PPTX , 页数:19 ,大小:548.77KB ,
文档编号:3927152      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3927152.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(九年级数学中考专题复习《与圆有关的计算》-课件-(共19张).pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

九年级数学中考专题复习《与圆有关的计算》-课件-(共19张).pptx

1、课前热身,复习回顾2.如图,已知O的半径OA=6,AOB=90,则AOB所对的弧AB的长为 .3.如图,已知圆上一段弧长为6,它所对的圆心角为120,则该圆的半径为_4.如图,圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为_72723 39 9 5.在圆心角为120的扇形AOB中,半径OA=6cm,则扇形AOB的面积是_12121.正五边形的中心角等于 .7272第2题图第3题图第4题图知识梳理,融会贯通圆正多边形等分圆周正多边形和圆的基本概念正多边的中心正多边的半径正多边的中心角正多边的边心距知识梳理,融会贯通正三角形正四边形正六边形常见的正常见的正n边形与外接圆:边形与外接圆:1201

2、209090606012012090906060(n2)180=n360.n内角,中心角 AOB=半径边长边心距内角中心角RRR1R22R23R232R222R212R2知一求二周长面积三角函数、勾股定理典例解析,能力提升例1 如图1-1,已知ABC是正三角形,边长为2,则其外接圆的面积为 .43BC=2,33OEtan30EC=1.33 222 34=OC.33 圆S图1-1边心距已知边长构造直角三角形33连接OB、OC,过O作OEBC于E.1 12 33EC1.半径2 3OC.3面积典例解析,能力提升变式练习 如图1-2,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为多少

3、?22ABBC6ABC120.BAMBCM30.BM3.AM=ABBM=3 3.AC2AM=6 3.ab 在正六边形中,解:连接AC,过B作BMAC于点M.图1-26 3.b扳手张开的开口 至少为在多边形问题中,利用特殊角,添加辅助线,构造含特殊角的直角三角形是常用的方法.知识梳理,融会贯通圆弧长=n Rl弧长公式:1802=n RS扇形扇形面积公式:360n圆心角所对的弧长是圆心角所对的弧长是:2nR36012R3601圆心角所对的弧长是圆心角所对的弧长是:扇形面积1圆心角所对的扇形面积是圆心角所对的扇形面积是:21R360n圆心角所对的扇形面积是圆心角所对的扇形面积是:2nR3601=Sl

4、R扇形扇形面积公式:221801=22n R RRln RS扇形360知识梳理,融会贯通圆弧长 扇形面积圆锥的侧面积和全面积=a侧圆锥的侧面积:Sr2=+=+a侧全底圆锥的全面积:SSSrr11222Salr ar a 扇形圆锥的底面的周长2r=侧面展开扇形的弧长l.例2 如图2-1,在ABC中,ACB=90,BC=2,将ABC绕直角顶点C逆时针旋转60得ABC,则点B转过的路径长为 .23典例解析,能力提升圆心角为60扇形BCB的弧长6022=.3BBl弧180图形旋转过程中,某一点移动的路径就是扇形的弧,图形旋转过程中,某一点移动的路径就是扇形的弧,旋转中心就是圆心,旋转角度就是圆心角旋转

5、中心就是圆心,旋转角度就是圆心角.图2-1典例解析,能力提升变式练习 如图2-2,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是 .25222AB5AD12BD51213.,BDB连接,D,901313=,2BBl弧1809012=6,B Bl弧180扇形BDB圆心角为90扇形BDB的弧长,扇形BCB的弧长.图2-2C图形旋转过程中,某一点移动的路径就是扇形的弧,图形旋转过程中,某一点移动的路径就是扇形的弧,旋转中心就是圆心,旋转角度就是圆心角旋转中心就是圆心,旋转角度就是圆心角.1325+=6.22BBB B

6、ll弧弧典例解析,能力提升例3 如图3-1,在边长为1网格中,ABC的三个顶点在格点上,AB=AC,BAC=90,以点A为圆心的弧EF与BC相切于点D,D在格点上.求阴影部分的面积是 .AB=AC=6BC=6 2.,116618.22ABCSAC ABAD,AD=32.连接求不规则图形面积的方法-和差法9182图3-1ABCEAFSSS阴影扇形22903 2909.3603602EAFADS=扇形918.2ABCEAFSSS阴影扇形典例解析,能力提升例4 如图4-1,菱形ABCD的边长为2cm,A60,BD是以点A为圆心,AB长为半径的弧,CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积

7、为_ cm2.在菱形在菱形ABCDABCD中,中,C=C=A=60A=60,AB=AB=BC=CD=DA=2BC=CD=DA=2,ABDABD、BCDBCD是等边三角形是等边三角形BCD1=23=3.2SS 阴影求不规则图形面积的方法-等积变换法图4-13线段线段CDCD和弧和弧CDCD组成的弓形与组成的弓形与线段线段BDBD和弧和弧BDBD组成的弓形面积相等,组成的弓形面积相等,阴影部分的面积就等于等边三角形阴影部分的面积就等于等边三角形BCDBCD的面积的面积典例解析,能力提升例5 如图5-1,三个小正方形的边长都为1,则图中阴影部分面积的和是.求不规则图形面积的方法-拼凑法图5-1213

8、513.1804阴影的和S342=n RS扇形扇形面积公式:360典例解析,能力提升例6 如图6-1,从半径为9cm的圆形纸片上剪去三分之一圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的半径为cm.1360(1)=240.3圆心角是6圆锥的底面的周长2r=侧面展开扇形的弧长l.图6-1240912.180l弧,r设圆锥的底面半径是12,r26.r 解得圆锥的母线长=侧面展开扇形的半径.22963 5.高h圆锥的高是多少?常见的正常见的正n边形与外接圆:边形与外接圆:半径边长边心距三角函数、勾股定理课堂小结,凝练归纳(n2)180=n360.n内角,中心角 AOB=内角

9、中心角周长面积构造直角三角形课堂小结,凝练归纳求圆中有关阴影部分面积的方法:不规则图形的面积几个规则图形的面积的和差平移、翻折、旋转和差法拼凑法.等积变形法.公式法22=1=2.n RSSRSab扇形圆360课后练习,巩固拓展 1.已知圆锥的底面半径为3 cm,母线长为5 cm,则圆锥的侧面积是 .153.如图,已知正六边形的边长为1cm,分别 以它的三个不相邻的顶点为圆心,1cm长 为半径画弧,则所得到的三条弧的长度之 和为 cm(计算结果保留)22.如果圆锥的底面半径是4,母线长是16,那么这个圆锥侧面展开图圆心角的 度数是_902=(n aSSra a侧扇形,是母线长,也是展开扇形的半径

10、).360第3题图课后练习,巩固拓展5.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 .(结果保留)第5题图4.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 .2112 22.22Sl R 扇形课后练习,巩固拓展6.如图,CD为O的直径,CDAB于于F,AOBC于E,AO=2,C=30.求阴影部分的面积.S弓形=S扇形OAB-SOAB.CDAB,AOBC,又1=2.A=C=30.AO=2OF=1.CD是圆O的直径,OABOAB2SSS120212 3 1360243.3阴影扇形解:连接OB.第6题图AF3.AB2AF2 3.A=30,2=60,AOB=120.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|