ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:3MB ,
文档编号:4106018      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4106018.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(南航暑期国际课程大数据可视化第4讲课件3.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

南航暑期国际课程大数据可视化第4讲课件3.ppt

1、Visualization andData MiningOutline Graphical excellence and lie factor Representing data in 1,2,and 3-D Representing data in 4+dimensions Parallel coordinates Scatterplots Stick figuresNapoleon Invasion of Russia,1812NapoleonMarley,1885 www.odt.org,from http:/www.odt.org/Pictures/minard.jpg,used by

2、 permissionSnows Cholera Map,1855Asia at nightSouth and North Korea at nightSeoul,South KoreaNorth KoreaNotice how darkit isVisualization RoleSupport interactive explorationHelp in result presentationDisadvantage:requires human eyesCan be misleading Bad Visualization:SpreadsheetYear Sales1999 2,1102

3、000 2,1052001 2,1202002 2,1212003 2,124Sales2095210021052110211521202125213019992000200120022003SalesWhat is wrong with this graph?Bad Visualization:Spreadsheet with misleading Y axisYear Sales1999 2,1102000 2,1052001 2,1202002 2,1212003 2,124Sales2095210021052110211521202125213019992000200120022003

4、SalesY-Axis scale gives WRONGimpression of big changeBetter VisualizationYear Sales1999 2,1102000 2,1052001 2,1202002 2,1212003 2,124Sales05001000150020002500300019992000200120022003SalesAxis from 0 to 2000 scale gives correct impression of small changeLie Factordataineffectofsizegraphicinshowneffec

5、tofsizeFactorLie8.14528.0833.718)0.185.27(6.0)6.03.5(Tufte requirement:0.95Lie Factor1.05Tuftes Principles of Graphical Excellence Give the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space.Tell the truth about the data!Visualization MethodsVisualizing

6、 in 1-D,2-D and 3-D well-known visualization methodsVisualizing more dimensions Parallel Coordinates Other ideas1-D(Univariate)Data Representations7531020MeanlowhighMiddle 50%Tukey box plotHistogram2-D(Bivariate)Data Scatter plot,pricemileage3-D Data(projection)priceLie Factor=14.83-D image(requires

7、 3-D blue and red glasses)Taken by Mars Rover Spirit,Jan 2004Visualizing in 4+Dimensions Scatterplots Parallel Coordinates Chernoff faces Stick Figures Multiple ViewsGive each variable its own display A B C D E1 4 1 8 3 52 6 3 4 2 13 5 7 2 4 34 2 6 3 1 5A B C D E1234Problem:does not show correlation

8、sScatterplot MatrixRepresent each possiblepair of variables in theirown 2-D scatterplot(car data)Q:Useful for what?A:linear correlations (e.g.horsepower&weight)Q:Misses what?A:multivariate effectsParallel Coordinates Encode variables along a horizontal row Vertical line specifies valuesDataset in a

9、Cartesian coordinatesSame dataset in parallel coordinatesInvented by Alfred Inselberg while at IBM,1985Example:Visualizing Iris DataIris setosaIris versicolorIris virginicaFlower PartsPetal,a non-reproductive part of the flowerSepal,a non-reproductive part of the flowerParallel Coordinates Sepal Len

10、gth5.1Parallel Coordinates:2 DSepal Length5.1Sepal Width3.5Parallel Coordinates:4 DSepal Length5.1Sepal WidthPetal lengthPetal Width3.51.40.25.13.51.40.2Parallel Visualization of Iris dataParallel Visualization SummaryEach data point is a lineSimilar points correspond to similar linesLines crossing

11、over correspond to negatively correlated attributesInteractive exploration and clusteringProblems:order of axes,limit to 20 dimensionsChernoff FacesEncode different variables values in characteristicsof human facehttp:/www.cs.uchicago.edu/wiseman/chernoff/http:/ applets:Interactive FaceChernoff face

12、s,exampleStick FiguresTwo variables are mapped to X,Y axesOther variables are mapped to limb lengths and angles Texture patterns can show data characteristicsStick figures,examplecensus data showingage,income,sex,education,etc.Closed figures correspond to women and we can see more of them on the left.Note also a young woman with high incomeVisualization softwareFree and Open-sourceGgobiXmdvMany more-see www.KD SummaryMany methodsVisualization is possible in more than 3-DAim for graphical excellence

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|