ImageVerifierCode 换一换
格式:PPT , 页数:36 ,大小:997KB ,
文档编号:4107045      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4107045.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(数据仓库入门课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

数据仓库入门课件.ppt

1、Data Warehouse overview2数据仓库管理的历史时期数据仓库管理的历史时期l人工管理方式:这一时期是在20世纪50年代中期以前,这一阶段的计算机应用主要用于科学计算,外存只有纸带、磁带、卡片等,数据处理的方式基本上是批处理。这一时期数据管理的特点是:数据不保存;没有专用的数据管理软件,每个应用都必须自己完成存储结构、存取方法、输入输入输出等数据管理功能;一组数据对应一个应用,这使得程序之间可能有重复的数据。l 文件系统管理 这一阶段在20世纪50年代后期至60年代中后期,计算机应用开始用于信息管理,由于数据存储、检索和维护等需求,使得相应的研究开展起来了,在硬件和软件方面都得

2、到了发展,磁盘磁鼓出现,操作系统也产生。这一时期数据管理的特点主要是:数据保存,数据可以长期保存在磁盘上;有操作系统的文件管理系统,文件结构化,数据的物理结构和逻辑结构有了区别;有了存储文件后,数据可以不再仅仅属于某一个应用,而能进行一定程度的复用。但文件系统在数据管理方面存在缺陷,表现在数据冗余度大,数据和程序之间缺乏独立性,容易造成数据的不一致性。l 数据库系统(60年代末开始)3数据仓库的发展的动力数据仓库的发展的动力l业务需求驱动主要是详细的分析科学的经营l市场活动的细化和实施等l数据驱动数据量不断扩大没有数据仓库等相关技术很难全面了解企业l项目驱动4数据仓库定义数据仓库定义lInmo

3、n的定义:DataWarehouse is a subject-oriented,integrated,time-variant,and nonvolatile collection of data in support of managements decision making processl数据仓库的特点数据仓库的数据是面向主题的 数据仓库的数据是集成的 数据仓库的数据是与时间相关的 数据仓库的数据是稳定的 5简单的数据仓库架构简单的数据仓库架构6数据仓库实际应用例子数据仓库实际应用例子7数据集成数据集成l企业全面的经营数据OLTP分散在各个不同系统中(事件独立)l银行:卡、储蓄、信贷

4、、会计、中间业务等等系统lBOSS增值业务财务l集成数据建立关联l事件关联(业务之间是相互关联)l客户数据统一历史数据l大量历史数据的保存问题中国建设银行一个中等规模的省产生每天的交易详细记录大约200M通常在业务系统中只保存当日数据历史数据查询困难8数据仓库数据处理流程数据仓库数据处理流程数据格式检查源数据清洁、抽取、转换ODS数据抽取、转换装载数据到DW装载到OLAP报表展现业务系统数据/外部数据DW数据抽取、转换DW数据生成报表装载数据到ODS分析性查询9 ETL简述简述10ETL定义定义ETL:Extract-Transform-Load 数据抽取(Extract)、转换(Transf

5、orm)、装载(Load)的过程。ETL是BI/DW的核心和灵魂,按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程,是实施数据仓库的重要步骤11ETL应用过程应用过程l数据抽取 抽取主要是针对各个业务系统及不同网点的分散数据,充分理解数据定义后,规划需要的数据源及数据定义,制定可操作的数据源,制定增量抽取的定义。(数据源和文件等多种形式)l数据传输 数据传输是通过网络负责把远程的数据到本地目录下。12ETL应用过程应用过程l数据的清洗和转换 转换主要是针对数据仓库建立的模型,通过一系列的转换来实现将数据从业务模型 到分析模型,通过内建的库函数、自定义脚本或其他

6、的扩展方式,实现了各种复杂的 转换,并且支持调试环境,清楚的监控数据转换的状态。数据转换是真正将源数据变为目标数据的关键环节,它包括数据格式转,换数据类型转换、数据汇总计算、数据拼接等等。清洗主要是针对系统的各个环节可能出现的数据二义性、重复、不完整、违反业务 规则等问题,允许通过试抽取,将有问题的纪录先剔除出来,根据实际情况调整相应 的清洗操作。13ETL应用过程应用过程l数据加载入库 数据加载主要是将经过转换和清洗的数据加载到数据仓库里面,即入库,可以通过数据文件直接装载或直连数据库的方式来进行数据装载,可以充分体现高效性lETL调度 ETL的调度控制方式有两种:自动方式 由系统每天定时或

7、准实时启动后台程序,自动完成数据仓库ETL处理流程。手动方式 用户可以通过前台监控平台,对单个目标或批量目标进行手工调度。14ETL应用过程应用过程l监控 主要是监控ETL的整个过程,通过扫描ETL各模块的日志中的关键值,如记录时间等信息与当前的状态作比较,如果超过某一个值,则认为该模块运行可能出现问提,应告警。15ETL工具框架工具框架16OLAP简述简述17OLAP&OLTP(on-line transaction processing)OLTPOLAP用户操作人员,低层管理人员决策人员,高级管理人员功能日常操作处理分析决策DB 设计面向应用面向主题数据当前的,最新的细节的,二维的分立的历

8、史的,聚集的,多维的集成的,统一的存取读/写数十条记录读上百万条记录工作单位简单的事务复杂的查询用户数上千个上百个DB 大小100MB-GB100GB-TB18什么是什么是OLAP定义定义1:OLAP(联机分析处理联机分析处理)是针对特定问题的联机数据访问和分析。通过对信息(维数据)的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入观察。定义定义2:OLAP(联机分析处理联机分析处理)是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的

9、一类软件技术。(OLAP委员会的定义)OLAP的目标的目标是满足决策支持或多维环境特定的查询和报表需求,它的技术核心是“维”这个概念,因此OLAP也可以说是多维数据分析工具的集合。19相关基本概念相关基本概念1.维:维:是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)。2.维的层次:维的层次:人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。3.维的成员:维的成员:维的一个取值。是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)4.多维数组:多维数组:维和变量的组合表示。一个多

10、维数组可以表示为:(维1,维2,维n,变量)。(时间,地区,产品,销售额)5.数据单元数据单元(单元格单元格):多维数组的取值。(2000年1月,上海,笔记本电脑,$100000)20OLAP特性特性(1)(1)快速性快速性:用户对OLAP的快速反应能力有很高的要求。系统应能在5秒内对用户的大部分分析要求做出反应。(2)(2)可分析性可分析性:OLAP系统应能处理与应用有关的任何逻辑分析和统计分析。(3)(3)多维性多维性:多维性是OLAP的关键属性。系统必须提供对数据的多维视图和分析,包括对层次维和多重层次维的完全支持。(4)(4)信息性信息性:不论数据量有多大,也不管数据存储在何处,OLA

11、P系统应能及时获得信息,并且管理大容量信息。21OLAP表现方式表现方式l钻取改变维的层次,变换分析的粒度向上钻取(roll up)和向下钻取(drill down)l切片和切块在一部分维上选定值后,关心度量数据在剩余维上的分布如果剩余的维只有两个,则是切片;如果有三个,则是切块l旋转(pivot)旋转是变换维的方向,即在表格中重新安排维的放置(例如行列互换)22OLAP的分析方法的分析方法(一一)切片、切块切片、切块23OLAP的分析方法的分析方法(二二)钻取钻取按时间维向下钻取按时间维向上钻取6024OLAP的分析方法的分析方法(三三)旋转旋转25OLAP分类分类按照存储方式OLAPMOL

12、APHOLAPROLAP按照处理地点Client OLAPServer OLAP26OLAP实现方法实现方法lROLAP数据存储:基于关系数据库结构分类l事实表:用来存储数据和维关键字l维度表:每个维至少使用一个表来存放维的层次、成员类别等维的描述信息 数据模型l星型模式l雪花模式 lMOLAP(Multidimensional OLAP)数据存储:使用多维数组存储数据l基于多维数据组织的OLAP实现l以多维数据组织方式为核心结构分类:l立方块(Cube)lHOLAP(Hybrid OLAP)数据存储:基于混合数据组织的OLAP实现l其他实现方法27OLTP、ROLAP与与MOLAP模式模式2

13、8ROLAP的星型模式的星型模式(Star Schema)l事实表:用来存储事实的度量值和各个维的码值。l维 表:用来存放维的元数据(维的层次、成员类别等描述信息)。Time_idSales TableDiscount%DollarsUnitsFact TableMarket_idProduct_idScenarioProduct_idProduct TableSizeBrandProduct_DescDimension TableTime_idYearQuarterPeriod_DescPeriod TableDimension TableScenario TableActualProfit

14、ScenarioDimension TableMarket_idMarket TableRegionDistrictMarket_DescDimension Table29MOLAP的多维立方体的多维立方体(Multicube)30ROLAP与与MOLAP比较比较lROLAP优势没有大小限制现有的关系数据库的技术可以沿用.可以通过SQL实现详细数据与概要数据的存储现有关系型数据库已经对OLAP做了很多优化,包括并行存储、并行查询、并行数据管理、基于成本的查询优化、位图索引、SQL 的OLAP扩展(cube,rollup)等大大提高ROALP的速度lMOLAP优势性能好、响应速度快专为OLAP所

15、设计支持高性能的决策支持计算l复杂的跨维计算l多用户的读写操作l行级的计算31ROLAP与与MOLAP比较比较(续续)lROLAP缺点一般比MDD响应速度慢不支持有关预计算的读写操作SQL无法完成部分计算l无法完成多行的计算l无法完成维之间的计算lMOLAP缺点增加系统复杂度,增加系统培训与维护费用受操作系统平台中文件大小的限制,难以达到TB 级(只能1020G)需要进行预计算,可能导致数据爆炸无法支持维的动态变化缺乏数据模型和数据访问的标准32OLAP体系结构体系结构lROLAP Architecture lMOLAP Architecture SQL Result SetInfo.Requ

16、estResult SetDatabase Server R DBMSFront-end ToolROALP ArchitectureROLAP ServerMetadataRequestProcessingSQL Result SetInfo.RequestResult SetLoadDatabase Server RDBMSFront-end ToolMOALP ArchitectureMOLAP ServerMetadataRequestProcessing33OLAP体系结构体系结构(续续)lHOLAP ArchitectureResult SetORSQL QuerySQL Resu

17、lt SetInfo.RequestResult SetLoadDatabase Server RDBMSFront-end ToolHybrid ArchitectureMOLAP Server34流行的流行的OLAP工具介绍工具介绍lOLAP产品lHyperion EssbaselOracle ExpresslIBM DB2 OLAP ServerlSybase Power dimension lInformix MetacubelCA OLAP SERVERlMicrosoft analysis serviceslBriolCognoslBusiness ObjectlMicroStra

18、tegy lOLAP产品涉及的业务操作由外部或内部数据源批量装入数据由业务系统增量装入数据沿数据层次汇总数据对基于业务模型的新数据进行计算时间序列分析高复杂的查询沿数据层次细化分析随机查询多个联机会话(多用户同时访问)35OLAP展望展望l面向对象的联机分析处理O3LAP(Object-Oriented OLAP)l对象关系的联机分析处理OROLAP(Object Relational OLAP)l分布式联机分析处理DOLAP(Distributed OLAP)l时态联机分析处理TOLAP(Temporal OLAP)36Hyperion OLAP系统设计框架系统设计框架ETLDW dataEssBase DataEss App Mgr&EssCmdInternet/Intrnat其它数据文本Batch EssCMDExcel Plug-inExcel 报表EssBase OLAP ServerWeb ServerWeb OLAP 报表报表Essbase APISQL InterfaceHAB或或Analyzer数据仓库OLAP分析

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|