1、4.3 一次函数的图象第四章 一次函数导入新课讲授新课当堂练习课堂小结第2课时 一次函数的图象和性质学习目标1.了解一次函数的图象与性质(重点)2.能灵活运用一次函数的图象与性质解答有关问题(难点)导入新课导入新课复习引入(1)什么叫一次函数?从解析式上看,一次函数与正比例函数有什么关系?(2)正比例函数的图象是什么?是怎样得到的?(3)正比例函数有哪些性质?是怎样得到这些性质的?正比例函数 解析式 y=kx(k0)性质:k0,y 随x 的增大而增大;k0,y 随 x 的增大而减小一次函数解析式 y=kx+b(k0)针对函数 y=kx+b,大家想研究什么?应该怎样研究?图象:经过原点和(1,k
2、)的一条直线xyOk0k0 xyO?讲授新课讲授新课一次函数的图象的画法一 在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤列表描点连线 那么你能用同样的方法画出一次函数的图象吗?-3-3 -2-2 -1-15 54 43 32 21 1 o-2-2-3-3-4-4-5-5 2 2 3 3 4 4 5 5x xy y 1 1y=y=2x2x1 1描点、连线一次函数的图象一次函数的图象是什么?是什么?-1 -1 列表x x22110 01 12 2y=y=2x+12x+1 5 5 3 31 111330 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3
3、4 50 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5 6 7 8 9 100 1 2 3 4 50 1 2 3 4 5例1:画出一次函数y=2x1的图象几何画板:一次函数图象的画法.gsp总结归纳 一次函数y=kxb的图象也称为直线y=kxb.一次函数y=kxb的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一般过(0,b)和(1,k+b)或(,0)bkbkxy(0,b)(,0)kbO 用你认为最简单的方法画出
4、下列函数的图象:(1)y=-2x-1;(2)y=0.5x+1x01y=-2x-1y=0.5x+1-1-31y=-2x-1做一做1.5y=0.5x+1也可以先画直线 y=-2x与 y=0.5x,再分别平移它们,也能得到直线y=-2x-1与 y=0.5x+1.xy2O.活动:请大家用描点法在同一坐标系内画出一次函数y=x+2,y=x-2的图象.x-2-1012y=x+2y=x-20-31-42-23-140.y=x+2y=x-2思考:观察它们的图象有什么特点?y=xy=x+2y=x-2y2Ox2观察三个函数图象的平移情况:探究归纳 把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1.这三
5、个函数的图象形状都是 ,并且倾斜程度 _2.函数y=x的图象经过原点,函数y=x+2的图象与y轴交于点 ,即它可以看作由直线y=x向 平移 个单位长度而得到函数y=x-2的图象与y轴交于点 ,即它可以看作由直线y=x向_ 平移_个单位长度而得到直线相同(0,2)上2(0,-2)下2 比较三个函数的解析式,相同,它们的图象的位置关系是 .自变量系数k平行 一次函数y=kx+b(k0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移 个单位长度得到(当b0时,向 平移;当b0时,向 平移).b下上思考:与x轴的交点坐标是什么?,0bk要点归纳(1)将直线y2x向上平移2个单位后所得图象对
6、应的函数表达式为()Ay2x1 By2x2Cy2x1 Dy2x2(2)将正比例函数y6x的图象向上平移,则平移后所得图象对应的函数表达式可能是_(写出一个即可)练一练B y6x+3一次函数的性质二画一画1:在同一坐标系中作出下列函数的图象.131xy131xyxy31131xyxy31(1)(2)(3)-3O-223123-1-1-2xy1131xy思考:k,b的值跟图象有什么关系?xy31131xy131xy画一画2:在同一坐标系中作出下列函数的图象.(1)(2)(3)-3o-223123-1-1-2xy1xy31131xy131xy思考:k,b的值跟图象有什么关系?在一次函数y=kx+b中
7、,当k0时,y的值随着x值的增大而增大;当kk 0,b 0k 0,b 0k 0,b 0k 0,b 0k 0,b 00时,直线经过 一、二、四象限;b0时,直线经过一、二、三象限;b0,解得(2)由题意得1-2m0且m-10,即(3)由题意得1-2m0且m-10,解得1.一次函数y=x-2的大致图象为()CoyxoyxoyxyxoA B C D 当堂练习当堂练习 2.下列函数中,y的值随x值的增大而增大的函数是().A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2C 3.直线y=3x-2可由直线y=3x向 平移 单位得到.4.直线y=x+2可由直线y=x-1向 平移 单位得到
8、.下2上35.点A(-1,y1),B(3,y2)是直线y=kx+b(k”或“6.已知一次函数y(3m-8)x1-m图象与 y轴交点在x轴下方,且y随x的增大而减小,其中m为整数,求m的值.解解:由题意得 ,解得38010mm81m3又m为整数,m2课堂小结课堂小结一次函数函数的图象和性质当k0时,y的值随x值的增大而增大;当k0,b0时,经过一、二、三象限;当k0,b0时,经过一、三、四象限;当k0时,经过 一、二、四象限;当k0,b0时,经过二、三、四象限.bk图象性质小结与复习第六章 数据的分析知识构架知识梳理当堂练习课后作业数据的分析数据的一般水平或集中趋势数据的离散程度或波动大小平均数
9、、加权平均数中位数众数方差计算公式知识构架知识构架数据的代表一平均数定义一组数据的平均值称为这组数据的平均数算术平均数一般地,如果有n个数x1,x2,xn,那么 叫做这n个数的平均数加权平均数 一般地,如果在n个数x1,x2,xn中,x1出现f1次,x2出现f2次,xk出现fk次(其中f1f2fkn),那么,叫做x1,x2,xk这k个数的加权平均数,其中f1,f2,fk叫做x1,x2,xk的权,f1f2fkn)(121nxxxnx)(12211kkfxfxfxnx知识梳理知识梳理最多中间位置的数两个数据的平均数中位数定义将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处
10、于_就是这组数据的中位数,如果数据的个数是偶数,则中间_就是这组数据的中位数防错提醒 确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定众数定义一组数据中出现次数_的数据叫做这组数据的众数防错提醒(1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来分析(2)条形统计图中,(3)扇形统计图中,(1)折线统计图中,众数:同一水平线上出现次数最多的数据;中位数:从上到下(或从下到上)找中间点所对的数;平均数:可以用中位数与众数估测平均数众数:是柱子最高的数据;中位数:从左到右(或从右到左)找中间数;平均数:
11、可以用中位数与众数估测平均数众数:为扇形面积最大的数据;中位数:按顺序,看相应百分比,第50%与51%两个数据的平均数;平均数:可以利用加权平均数进行计算 从统计图中分析数据二数据的波动三平均数 大表示波动的量定义意义方差设有n个数据x1,x2,x3,xn,各数据与它们的_的差的平方分别是(x1x)2,(x2x)2,(xnx)2,我们用它们的平均数,即用_来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2方差越大,数据的波动越_,反之也成立222121()()()nxxxxxxn标准差就是方差的算术平方根1.下表是王勇家去年1-6月份的用水情况:则王勇家去年1-6月份的月平均用水量为
12、()A3吨 B3.5吨 C4吨 D4.5吨 C当堂练习当堂练习解析:(3+4+3.5+3+4.5+6)6=246=4(吨)故选C2.某班体育委员统计了全班45名同学一周的体育锻炼时间,并绘制了如图所示的折线统计图,则在体育锻炼时间这组数据中,众数和中位数分别是()A18,18 B9,9 C9,10 D18,9 B解析:由图可知,锻炼9小时的有18人,所以9在这组数中出现18次为最多,所以众数是9把数据从小到大排列,中位数是第23位数,第23位是9,所以中位数是93.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图C.折线统计图 D.频数分布直方图 C4.如图
13、是某农户2015年收入情况的扇形统计图,已知他2015年的总收入为5万元,则他的打工收入是()A.0.75万元 B.1.25万元C.1.75万元 D.2万元B解析:5万元25%=1.25万元.5.我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分 中位数 方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1
14、)请依据图表中的数据,求a,b的值;(2)直接写出表中m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好请你给出两条支持八年级队成绩好的理由(1)解:依题意,得 解得31+6a+71+81+91+10b=6.710a+1+1+1+b=9010或1+a+1+1+1+b=10a=5b=1(1)请依据图表中的数据,求a,b的值;(2)m6,n20%.(2)直接写出表中m,n的值;队别平均分 中位数 方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(3)八年级队平均分高于七年级队;八年级队的成
15、绩比七年级队稳定;八年级队的成绩集中在中上游,所以支持八年级队成绩好(注:任说两条即可)(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好请你给出两条支持八年级队成绩好的理由6.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙1甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的
16、另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?解:(1)根据折线统计图,得乙的射击成绩为2,4,6,8,7,7,8,9,9,10,平均数为 (环)中位数为7.5环,方差为 (27)2(47)2(67)2(87)2(77)2(77)2(87)2(97)2(97)2(107)25.4.根据折线统计图,知甲除第八次外的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7,则甲第八次成绩为70(967627789)9(环),所以甲的射击成绩为2,6,6,7,7,7,8,9,9,9,71010998778642101中位数为7环,平均数为(2667778999)7(环),方差为(27)2(67)2(67)2(77)2(77)2(77)2(87)2(97)2(97)2(97)24.补全图表如下甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7740乙77.55.41甲、乙射击成绩折线图(2)甲胜出理由:因为甲的方差小于乙的方差(3)略.见章末练习课后作业课后作业
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。