ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:2.28MB ,
文档编号:4158406      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4158406.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(新北师大版八年级数学下册《四章 因式分解2 提公因式法公因式为多项式的提公司因式法》课件-9.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

新北师大版八年级数学下册《四章 因式分解2 提公因式法公因式为多项式的提公司因式法》课件-9.ppt

1、第四章第四章 因式分解因式分解4.2.2 4.2.2 提公因式法提公因式法1 1.多项式的第一项系数为负数时,多项式的第一项系数为负数时,先提先提取取“-”“-”号,注意多项式的各项变号;号,注意多项式的各项变号;提公因式法应注意事项:提公因式法应注意事项:2 2.公因式的系数是多项式各项公因式的系数是多项式各项_;_;3.3.字母取多项式各项中都含有的字母取多项式各项中都含有的_;_;4.4.相同字母的指数取各项中最小的一个相同字母的指数取各项中最小的一个,即即_._.系数的最大公约数系数的最大公约数相同的字母相同的字母最低次幂最低次幂知识回顾知识回顾 提公因式法分解因式与单项式乘多项式有提

2、公因式法分解因式与单项式乘多项式有什么关系?什么关系?142nmn(1)(2)4232aamn(3)(4)xxx842234222xxxbabba952952 bab mnmn282mamama126323互逆关系互逆关系下列多项式中各项的公因式是什么?下列多项式中各项的公因式是什么?232x xx23 2x xx22acabacba2x2x2()ab公因式:公因式:公因式:公因式:公因式:公因式:情境引入情境引入)(3)(2)2(;32)1(cbcbaxax).(2)(7)4();()()3(nmynmxyxbyxa思考:下列各题中有公因式吗?思考:下列各题中有公因式吗?若有,你能指出来吗?

3、若有,你能指出来吗?解:(解:(1 1)x x;(2 2)()(b+cb+c););(3 3)()(x-yx-y);();(4 4)()(m-nm-n)。)。自主预习自主预习)(3)(2)2(;32)1(cbcbaxax).(2)(7)4();()()3(nmynmxyxbyxa思考:提公因式时,公因式可以是多项式吗?思考:提公因式时,公因式可以是多项式吗?公因式是多项式形式,怎样运用提公因式法分解因式?公因式是多项式形式,怎样运用提公因式法分解因式?尝试把上面的式子因式分解。尝试把上面的式子因式分解。新知探究新知探究).(2)(7)4();()()3(nmynmxyxbyxa尝试把上面的式子

4、因式分解。尝试把上面的式子因式分解。a a(x-yx-y)+b+b(x-yx-y)=(x-yx-y)()(a+ba+b)。)。7x7x(m-nm-n)-2y-2y(m-nm-n)=(m-nm-n)()(7x-2y7x-2y)。)。新知探究新知探究整体思想是数学中一种重要而且常用的思想方法。整体思想是数学中一种重要而且常用的思想方法。提公因式法步骤(分两步)提公因式法步骤(分两步)第一步第一步:找出公因式;找出公因式;第二步第二步:提取公因式提取公因式 ,即将多项式化为两个因式的乘积。即将多项式化为两个因式的乘积。用提公因式法分解因式时,公因式可以用提公因式法分解因式时,公因式可以是一个单项式也

5、可以是一个多项式。是一个单项式也可以是一个多项式。例例1 1:把:把3a3a(x+yx+y)-2b-2b(x+yx+y)分解因式;)分解因式;分析:这个多项式就整体而言可分为两大项,即分析:这个多项式就整体而言可分为两大项,即3a3a(x+yx+y)与)与-2ab-2ab(x+yx+y)每项中都含有()每项中都含有(x+yx+y)因此,可把(因此,可把(x+yx+y)作为公因式提出来。)作为公因式提出来。解:解:3a3a(x+yx+y)-2b-2b(x+yx+y)=(x+yx+y).3a-2b.3a-2b.(x+yx+y)=(x+yx+y)()(3a-2b3a-2b)例例2:2:把(把(1 1

6、)a(x-3)+2b(x-3)a(x-3)+2b(x-3)(2 2)分解因分解因式式。解解:(1 1)a(x-3)+2b(x-3)a(x-3)+2b(x-3)=(x-3)(a+2b)=(x-3)(a+2b)2211xyxy2211xyxy=y(x+1)(1+xy+y)=y(x+1)(1+xy+y)(2)(2)例例3 3 把下列多项式因式分解:把下列多项式因式分解:1y xyx xy 2y xyx yx 223a xyb yx 334a xyb yx 225a b abababxyyxy xyx xyxyyx 2xyab33a xyb xy 3xyabab abab()()a xyb xy分解下

7、列因式分解下列因式(1)()();a xyb yx(1)()()a xyb yx解:()()xy ab分析:分析:本题本题应用如下关系:应用如下关系:(b-ab-a)=-=-(a-ba-b)(b-ab-a)2 2=(a-ba-b)2 2(b-ab-a)3 3=-=-(a-ba-b)3 3 (b-ab-a)4 4=(a-ba-b)4 4分解下列因式分解下列因式32(2)6()12()mnnm26()()2mnmn326()12()mnmn)2()(62nmnm即:当即:当n n为正偶数时(为正偶数时(b-ab-a)n n=(a-ba-b)n n 当当n n为正奇数时(为正奇数时(b-ab-a)n

8、 n=-(a-ba-b)n n例例3 3 两个只有符号不同的多项式是否有关系两个只有符号不同的多项式是否有关系,有如有如下判断方法下判断方法:(1)(1)当相同字母前的符号相同时当相同字母前的符号相同时,则两个多项式相等则两个多项式相等.如如:a-b:a-b 和和-b+a -b+a 即即 a-b=-b+a a-b=-b+a(2)(2)当相同字母前的符号均相反时当相同字母前的符号均相反时,则两个多项式互为相反数则两个多项式互为相反数.如如:a-b:a-b 和和 b-a b-a 即即 a-b=-a-b=-(a-ba-b)知识梳理知识梳理(1)a-b(1)a-b 与与-a+b -a+b 互为相反数互

9、为相反数.(a-b)(a-b)n n=(b-a)=(b-a)n n (n(n是偶数)是偶数)(a-b)(a-b)n n=-(b-a)=-(b-a)n n (n (n是奇数)是奇数)(3)a+b3)a+b与与b+ab+a互为相同数互为相同数,(a+b)(a+b)n n=(b+a)=(b+a)n n (n(n是整数)是整数)(2 2)a+b a+b 与与-a-b -a-b 互为相反数互为相反数.(-a-b)(-a-b)n n=(a+b)=(a+b)n n (n(n是偶数)是偶数)(-a-b)(-a-b)n n=-(a+b)=-(a+b)n n (n(n是奇数)是奇数)1.1.在下列各式等号右边的括

10、号前填入在下列各式等号右边的括号前填入“+”+”或或“”号,使等式成立:号,使等式成立:(1)(1)(a-b)=_(b-a);(2)(a-b)(a-b)=_(b-a);(2)(a-b)2 2=_(b-a)=_(b-a)2 2;(3)(a-b)(3)(a-b)3 3=_(b-a)=_(b-a)3 3;(4)(a-b)(4)(a-b)4 4=_(b-a)=_(b-a)4 4;(5)(a+b)(5)(a+b)5 5=_(b+a)=_(b+a)5 5;(6)(a+b)6=_(b+a)6.+(7)(a+b)=_(-b-a);(7)(a+b)=_(-b-a);-(8)(a+b)(8)(a+b)2 2=_(

11、-a-b)=_(-a-b)2 2.+随堂练习随堂练习2.2.把把 12b(a-b)12b(a-b)2 2 18(b-a)18(b-a)3 3 分解因式分解因式.解:解:12b(a-b)12b(a-b)2 2 18(b-a)18(b-a)3 3 =12b(a-b)=12b(a-b)2 2+18(a-b)+18(a-b)3 3 =6(a-b)=6(a-b)2 2 2b+3(a-b)2b+3(a-b)=6(a-b)=6(a-b)2 2(2b+3a-3b)(2b+3a-3b)=6(a-b)=6(a-b)2 2(3a-b)(3a-b)试试看:分解因式试试看:分解因式(x-y)(x-y)2 2+y(y-x

12、)+y(y-x)3.3.下列各式均用提取公因式法因式分解下列各式均用提取公因式法因式分解,其中正确的是其中正确的是()()A.6(xA.6(x2)2)x(2x(2x)=(xx)=(x2)(62)(6x)x)B.xB.x3 33x3x2 2x=x(xx=x(x2 23x)3x)C.a(aC.a(ab)b)2 2ab(aab(ab)=a(ab)=a(ab)b)D.3xD.3xn n1 16x6xn n=3x=3xn n(x(x2)2)D D4.m4.m2 2(a(a2)2)m(2m(2a)a)分解因式等于()分解因式等于()A.A.(a(a2)(m2)(m2 2m)B.m(am)B.m(a2)(m2)(m1)1)C.m(aC.m(a2)(m2)(m1)D.1)D.以上答案都不对以上答案都不对C C5.5.把下列各式分解因式把下列各式分解因式(1)8(1)8 m m2 2n+2mnn+2mn(2)12xyz-9x(2)12xyz-9x2 2y y2 2(3)p(a(3)p(a2 2+b+b2 2)-q(a)-q(a2 2+b+b2 2)(4)(4)-x-x3 3y y3 3-x-x2 2y y2 2-xy-xy

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|