1、举一反三举一反三 数数图形(二)数数图形(二)一、知识要点一、知识要点 在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来。二、精讲精练二、精讲精练【例题例题1】数一数下图中有多少个长方形?【思路导航思路导航】图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有63=18个长方形。数长方形可以用下面的公式:长边上的线段短边上的线段=长方形的个数 练习练习1:数一数,下
2、面各图中分别有几个长方形?【例题例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)【思路导航思路导航】图中边长为1个长度单位的正方形有33=9个,边长为2个长度单位的正方形有22=4个,边长为3个长度单位的正方形有11=1个。所以图中的正方形总数为:1+4+9=14个。经进一步分析可以发现,由相同的nn个小方格组成的几行几列的正方形其中所含的正方形总数为:1122nn。练习练习2:数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)【思路导航思路导航】边长是1个长度单
3、位的正方形有32=6个,边长是2个长度单位的正方形有21=2个。所以,图中正方形的总数为:6+2=8个。经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m1)(n1)(m2)(n2)(mn1)n.练习练习3:1数一数下列各图中分别有多少个正方形。2下图中有多少个长方形,其中有多少个是正方形?【例题例题4】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?【思路导航思路导航】这道题是数线段的方法在实际生活中的应用,连同广州、北京在内,这条铁路上共
4、有10个站,共有1+2+3+9=45条线段,因此要准备45种不同的车票。由于这些车站之间的距离各不相等,因此,有多少种不同的车票,就有多少种不同的票价,所以共有45种不同的票价。练习练习4:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题例题5】求下列图中线段长度的总和。(单位:厘米)【思路导航思路导航】要求图中的线段长度总和,可以这样计算:AB+AC+AD+AE+BC+BD+BE+CD+CE+DE=1+(1+4)
5、+(1+4+2)+(1+4+2+3)+4+(4+2)+(4+2+3)+2+(2+3)=352厘米从上面的计算中可以发现这样一个规律,算式中长1厘米的基本线段(我们把不能再划分的线段称为基本线段)出现了4次,长4厘米的线段出现了(32)次,长2厘米的线段出现了(23)次,长3厘米的线段出现了(14)次,所以,各线段长度的总和还可以这样算:14+4(32)+2(23)+3(14)=1(51)+4(52)2+2(53)3+3(54)4=52厘米上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、a(n1)。以上各线段长度的总和为L,那么L=a1(n1)1+a2(n2)2+a3(n3)3+a(n1)1(n1)。练习练习5:1.一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?2.求下图中所有线段的总和。(单位:米)3.求下图中所有线段的总和。(单位:厘米)