1、用尺规作三角形用尺规作三角形本课内容本节内容2.6你已经学会用尺规作哪些图形你已经学会用尺规作哪些图形?动手试一试动手试一试.说一说说一说 会作一条线段等于已会作一条线段等于已知线段,会作线段的垂直知线段,会作线段的垂直平分线,平分线,根据三角形全等的判定条件,已知三边、两根据三角形全等的判定条件,已知三边、两边及其夹角、两角及其夹边,都可以确定唯一的边及其夹角、两角及其夹边,都可以确定唯一的一个三角形,从而我们可以根据这些条件用尺规一个三角形,从而我们可以根据这些条件用尺规来作三角形来作三角形.已知三边作三角形已知三边作三角形.已知线段已知线段a,b,c.求作求作ABC,使,使AB=c,BC
2、=a,AC=b.已知底边及底边上的高线作等腰三角形已知底边及底边上的高线作等腰三角形.如图,已知线段如图,已知线段a,h.求作求作ABC,使,使AB=AC,且,且BC=a,高,高AD=h.分析分析 首先作出该等腰三角形首先作出该等腰三角形的底边及底边的垂直平分线,然的底边及底边的垂直平分线,然后在垂直平分线上以底边中点为后在垂直平分线上以底边中点为一端点,截取长为一端点,截取长为h h的线段来确定的线段来确定三角形另一个顶点三角形另一个顶点.如何作一个角的平分线如何作一个角的平分线?如图,已知如图,已知AOB,求作,求作AOB的平分线的平分线.做一做做一做 运用所学知识,请说运用所学知识,请说
3、一说:为什么一说:为什么OC是是AOB的平分线的平分线?1.如图,一个机器零件上的两个孔的中心如图,一个机器零件上的两个孔的中心A,B已已定好,又知第三个孔的中心定好,又知第三个孔的中心C距距A点点1.5m,距,距B点点1.8m.如何找出如何找出C点的位置呢点的位置呢?答:以点答:以点A为圆心,为圆心,1.5cm为半为半径画弧,再以点径画弧,再以点B为圆心,为圆心,1.8cm为半径画弧,两弧的交为半径画弧,两弧的交点即为第三个孔的中心点即为第三个孔的中心C.练习练习2.如图,已知线段如图,已知线段a,b,求作等腰三角形,使它,求作等腰三角形,使它 的腰长等于线段的腰长等于线段a,底边长等于线段
4、,底边长等于线段b.如何作一个角等于已知角如何作一个角等于已知角?如图,已知如图,已知AOB,求作一个角,使它等于,求作一个角,使它等于AOB.动脑筋动脑筋说一说说一说 运用所学知识,请说一说:为什么运用所学知识,请说一说:为什么 就是所求作的角就是所求作的角?A O B如图,已知如图,已知 和线段和线段a,c.求作求作ABC,使,使 ,BC=a,BA=c.B=已知两边及其夹角作三角形已知两边及其夹角作三角形.如图,已知如图,已知 ,和线段和线段a.求作求作ABC,使,使 ,BC=a.ABC=ACB=已知两角及其夹边作三角形已知两角及其夹边作三角形.练习练习 用尺规完成下列作图用尺规完成下列作
5、图(只保留作图痕迹,只保留作图痕迹,不要求写出作法不要求写出作法).1.用尺规作一个角等于用尺规作一个角等于90.如图所示如图所示,在直线在直线l上截取线段上截取线段PA、PB,使使PA=PB;分别以点分别以点A A、B B为圆心,大于为圆心,大于 PA的任意长度为半径画弧,的任意长度为半径画弧,两弧相交于点两弧相交于点C C.连接连接CP,则,则CPA=CPB=90.2.如图,已知线段如图,已知线段a,b,求作一个直角三角形,求作一个直角三角形,使它的两直角边分别为使它的两直角边分别为a和和b.如图所示如图所示,作作MCN=90.在射线在射线CM上截取上截取CA=a,在射线在射线CN上截取上
6、截取CB=b.连接连接AB,则,则ABC就是所求作的三角形就是所求作的三角形.abab小结与复习小结与复习1.三角形的三边之间有怎样的关系三角形的三边之间有怎样的关系?2.什么叫三角形的高、角平分线、中线什么叫三角形的高、角平分线、中线?3.结合本章所学的知识,举出一个命题并写出结合本章所学的知识,举出一个命题并写出 其逆命题,再判断它们的真假其逆命题,再判断它们的真假.4.等腰等腰(等边等边)三角形具有哪些性质三角形具有哪些性质?如何判定一个三角形是等腰如何判定一个三角形是等腰(等边等边)三角形三角形?5.线段的垂直平分线的性质定理是什么线段的垂直平分线的性质定理是什么?如何作线段的垂直平分
7、线如何作线段的垂直平分线?6.全等三角形有哪些性质全等三角形有哪些性质?如何判定两个三角形全等如何判定两个三角形全等?本章知识结构本章知识结构三三角角形形内角、外角、高、角平分线、中线内角、外角、高、角平分线、中线性质性质等腰(等边)三角形的性质与判定等腰(等边)三角形的性质与判定线段的垂直平分线线段的垂直平分线全等三角形全等三角形用尺规作三角形用尺规作三角形任意两边之和大于第三边任意两边之和大于第三边内角和定理及其推论内角和定理及其推论性质性质判定判定(SAS、ASA、AAS、SSS)逆命题逆命题命题命题真命题真命题假命题假命题基本事实基本事实定理及其推论定理及其推论定义定义互互逆逆命命题题
8、举反例举反例证明证明证明的依据证明的依据注意注意1.一个命题是真命题,它的逆命题不一定是真命题一个命题是真命题,它的逆命题不一定是真命题.2.命题有真有假命题有真有假.要判断一个命题为真命题,需要要判断一个命题为真命题,需要 进行证明,并且证明的过程要言必有据进行证明,并且证明的过程要言必有据.要判断一要判断一 个命题为假命题,只需举一个反例个命题为假命题,只需举一个反例.3.要证明某些线段或角相等时,可以考虑转化为证要证明某些线段或角相等时,可以考虑转化为证 明两个三角形全等明两个三角形全等.中考中考 试题试题例例1 如图如图1,已知线段,已知线段a、b、c,求作以,求作以a、b、c为边的三
9、角形为边的三角形.解解作一条线段作一条线段AB=c.分别以分别以A、B为圆心,以为圆心,以b、a为半径画弧,为半径画弧,两弧交于两弧交于C点点.连接连接AC、BC.则则ABC就是所求作的三角形就是所求作的三角形.中考中考 试题试题例例2 已知:一个直角,线段已知:一个直角,线段a、b,如图,如图1所示所示.求作:求作:ABC,使,使C=90,AC=a,BC=b.解解如图如图2所示所示,作作MCN=90.在射线在射线CM上截取上截取CA=a,在射线在射线CN上截取上截取CB=b.连接连接AB,则,则ABC就是所求作的三角形就是所求作的三角形.结结 束束湘教版湘教版SHUXUE八年级上八年级上本节
10、内容1.5执教:黄亭市镇中学执教:黄亭市镇中学列方程解应用题的一般步骤列方程解应用题的一般步骤分析题中已知什么分析题中已知什么,求什么求什么.有哪些事物在什么方面产生关系。有哪些事物在什么方面产生关系。一个相等关系一个相等关系.(和(和/倍倍/不同方案间不变量的相等)不同方案间不变量的相等)设未知数设未知数(直接设,间接设直接设,间接设),),包括单位名称包括单位名称.把相等关系中各个量转化成代数式把相等关系中各个量转化成代数式,从而列出方程从而列出方程.解方程解方程,求出未知数的值求出未知数的值(x=a).(x=a).代入方程检验。代入方程检验。检验检验所求解是否符合题意,写出答案。所求解是
11、否符合题意,写出答案。审审设设列列找找答答解解回顾与复习A,B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg且A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,求这两种机器人每小时分别搬运多少原料?解:解:设设B型机器人每小时搬运型机器人每小时搬运 xkg,则,则A型机器人每小型机器人每小时搬运(时搬运(x+20)kg.800201000 xx由题意可知由题意可知方程变形为:方程变形为:10001000 x=800(=800(x+20)+20)x=80=80检验检验:x=80代入代入x(x+20)中,中,它的值不等于它的值不等于0,x=80是原方
12、程的根,并符合题意是原方程的根,并符合题意.答:答:B B型机器人每小时搬运型机器人每小时搬运80kg80kg,A A型机器人每小时搬运型机器人每小时搬运100kg.100kg.课前热身课前热身强调:既要检验所求的解强调:既要检验所求的解是否是原分式方程的解,是否是原分式方程的解,还要检验是否符合题意;还要检验是否符合题意;检验目的是检验目的是:(1):(1)是否是所列方是否是所列方程的解程的解;(2);(2)是否满足实际意义是否满足实际意义.(1)审清题意;(2)设未知数(要有单位);(3)找出相等关系,列出方程;(4)解方程,并验根。(5)写出答案(要有单位)。例题讲解与练习例题讲解与练习
13、例1.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,完成全部工程,哪个队的施工速度快?分析:甲队1个月完成总工程的 ,设乙队如果单独完成施工1个月能完成总工程的 ,那么甲队半个月完成总工程的 ,乙队半个月完成总工程的 ,两队半个月完成总工程的 .131x1612x1612x+1612x+13+=1得方程:得方程:解得:解得:x=1=1所以乙队的施工速度快。所以乙队的施工速度快。例2 A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的
14、速度。已知两边的速度之比为5:2,所以设大车的速度为2x千米/时,小车的速度为5x千米/时,而A、B两地相距135千米,则大车行驶时间 小时,小车行驶时间 小时,又知大车早出发5小时,比小车早到30分钟,实际大车行驶时间比小车行驶时间多4.5小时.2x1355x1352x1355x135-=5-0.5解:设大车的速度为解:设大车的速度为2 2x千米千米/时,小车的速度为时,小车的速度为5 5x千米千米/时,时,根据题意得根据题意得解之得解之得 x=9=9经检验经检验x=9=9是原方程的解是原方程的解当当x=9=9时,时,2 2x=18=18,5 5x=45=45答:大车的速度为答:大车的速度为
15、1818千米千米/时,时,小车的速度为小车的速度为4545千米千米/时时.例例3 3:农机厂到距工厂:农机厂到距工厂1515kmkm的向阳村检修农机,一部分的向阳村检修农机,一部分人骑自行车先走,过了人骑自行车先走,过了4040分钟,其余人乘汽车去,结果分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的他们同时到达,已知汽车的速度是自行车的3 3倍,求两倍,求两车的速度。车的速度。分析:设自行车的速度是分析:设自行车的速度是xkm/h,汽车的速度是,汽车的速度是3xkm/h请根据题意填写速度、时间、路程之间的关系表请根据题意填写速度、时间、路程之间的关系表速度速度(km/h)路程
16、路程(km)时间(时间(h)自行车自行车 汽车汽车 x3x151515315找出等量关系。找出等量关系。列出方程。列出方程。汽车所用的时间自行车所用时间汽车所用的时间自行车所用时间 时时323215315=-借助表格分借助表格分析数量关系析数量关系 解答由学生完成。解答由学生完成。1 1、甲乙两人同时从、甲乙两人同时从A A地出发,骑自行车到地出发,骑自行车到B B地,已知两地,已知两地地ABAB的距离为的距离为3030,甲每小时比乙多走,甲每小时比乙多走3 3,并且比乙,并且比乙先到先到4040分钟设乙每小时走分钟设乙每小时走x x,则可列方程为,则可列方程为()()2 2、某农场挖一条、某
17、农场挖一条960m960m长的渠道,开工后每天比原计划长的渠道,开工后每天比原计划多挖多挖20m20m,结果提前,结果提前4 4天完成了任务。若设原计划每天天完成了任务。若设原计划每天挖挖xmxm,则根据题意可列出方程(,则根据题意可列出方程()960960204xx960960204xx960209604xx960209604xxBA1、一艘轮船在两个码头之间航行,顺水航行、一艘轮船在两个码头之间航行,顺水航行60km所所需时间与逆水航行需时间与逆水航行48km所需时间相同所需时间相同.已知水流的速已知水流的速度是度是2km/h,求轮船在静水中航行的速度,求轮船在静水中航行的速度.2 2、我
18、军某部由驻地到距离、我军某部由驻地到距离3030千米的地方去执行任务,千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的由于情况发生了变化,急行军速度必需是原计划的1.51.5倍,才能按要求提前倍,才能按要求提前2 2小时到达,求急行军的速度。小时到达,求急行军的速度。3、甲、乙分别从相距36千米的A、B两地同时相向而行甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度7 7、一项工程,需要在规定日期内完成,如果甲队独做,一项工程,需要在规定日期内完成,如果甲队独做,恰好如期
19、完成,如果乙队独做,就要超过规定恰好如期完成,如果乙队独做,就要超过规定3 3天,现在天,现在由甲、乙两队合作由甲、乙两队合作2 2天,剩下的由乙队独做,也刚好在规天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?定日期内完成,问规定日期是几天?6、甲、乙两人做某种机器零件,已知甲每小时比乙多、甲、乙两人做某种机器零件,已知甲每小时比乙多做做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用个零件所用时间相等,求甲、乙每小时各做多少个零件?时间相等,求甲、乙每小时各做多少个零件?4 4.某班学生到距学校某班学生到距学校1212千米的烈士陵园扫墓千米的
20、烈士陵园扫墓,一部分人一部分人骑自行车先行骑自行车先行,经经0.50.5时后时后,其余的人乘汽车出发其余的人乘汽车出发,结果结果他们同时到达他们同时到达.已知汽车的速度是自行车的已知汽车的速度是自行车的3 3倍倍,求自行求自行车和汽车的速度车和汽车的速度.5.某农场开挖一条长某农场开挖一条长960米的渠道,开工后工作效率米的渠道,开工后工作效率比计划提高比计划提高50%,结果提前,结果提前4天完成任务,原计划每天天完成任务,原计划每天挖多少米?挖多少米?1.甲、乙两人做某种机器零件,已知甲每小时比乙多做甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做个,甲做90个零件所用的时间和乙做个
21、零件所用的时间和乙做60个零件所用时个零件所用时间相等,求甲、乙每小时各做多少个零件?间相等,求甲、乙每小时各做多少个零件?2.甲、乙两人练习骑自行车,已知甲每小时比乙甲、乙两人练习骑自行车,已知甲每小时比乙多走多走6千米,甲骑千米,甲骑90千米所用的时间和乙起骑千米所用的时间和乙起骑60千千米所用时间相等,求甲、乙每小时各骑多少千米?米所用时间相等,求甲、乙每小时各骑多少千米?3.甲、乙两种商品,已知甲的价格每件比乙多甲、乙两种商品,已知甲的价格每件比乙多6元,买甲元,买甲90件所用的钱和买乙件所用的钱和买乙60件所用钱相等,件所用钱相等,求甲、乙每件商品的价格各多少元?求甲、乙每件商品的价
22、格各多少元?下面三个问题有什么区别和联系?下面三个问题有什么区别和联系?小结小结 列分式方程解应用题的一般步骤:列分式方程解应用题的一般步骤:1.审审:分析题意分析题意,找出数量关系和相等关系找出数量关系和相等关系.2.设设:选择恰当的未知数选择恰当的未知数,注意单位和语言完整注意单位和语言完整.3.列列:根据数量和相等关系根据数量和相等关系,正确列出代数式和方程正确列出代数式和方程.4.解解:认真仔细认真仔细.5.验验:有有两次两次检验检验.6.答答:注意单位和语言完整注意单位和语言完整.且答案要生活化且答案要生活化.检验目的是检验目的是:(1)是否是所列方是否是所列方程的解程的解;(2)是
23、否满足实际意义是否满足实际意义.作业:作业:P36P36练习练习1 1、P36 A 2P36 A 2、4 4湘教版湘教版SHUXUE八年级上八年级上本节内容1.5执教:黄亭市镇中学执教:黄亭市镇中学列方程解应用题的一般步骤列方程解应用题的一般步骤分析题中已知什么分析题中已知什么,求什么求什么.有哪些事物在什么方面产生关系。有哪些事物在什么方面产生关系。一个相等关系一个相等关系.(和(和/倍倍/不同方案间不变量的相等)不同方案间不变量的相等)设未知数设未知数(直接设,间接设直接设,间接设),),包括单位名称包括单位名称.把相等关系中各个量转化成代数式把相等关系中各个量转化成代数式,从而列出方程从
24、而列出方程.解方程解方程,求出未知数的值求出未知数的值(x=a).(x=a).代入方程检验。代入方程检验。检验检验所求解是否符合题意,写出答案。所求解是否符合题意,写出答案。审审设设列列找找答答解解回顾与复习A,B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg且A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,求这两种机器人每小时分别搬运多少原料?解:解:设设B型机器人每小时搬运型机器人每小时搬运 xkg,则,则A型机器人每小型机器人每小时搬运(时搬运(x+20)kg.800201000 xx由题意可知由题意可知方程变形为:方程变形为:10001
25、000 x=800(=800(x+20)+20)x=80=80检验检验:x=80代入代入x(x+20)中,中,它的值不等于它的值不等于0,x=80是原方程的根,并符合题意是原方程的根,并符合题意.答:答:B B型机器人每小时搬运型机器人每小时搬运80kg80kg,A A型机器人每小时搬运型机器人每小时搬运100kg.100kg.课前热身课前热身强调:既要检验所求的解强调:既要检验所求的解是否是原分式方程的解,是否是原分式方程的解,还要检验是否符合题意;还要检验是否符合题意;检验目的是检验目的是:(1):(1)是否是所列方是否是所列方程的解程的解;(2);(2)是否满足实际意义是否满足实际意义.
26、(1)审清题意;(2)设未知数(要有单位);(3)找出相等关系,列出方程;(4)解方程,并验根。(5)写出答案(要有单位)。例题讲解与练习例题讲解与练习例1.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,完成全部工程,哪个队的施工速度快?分析:甲队1个月完成总工程的 ,设乙队如果单独完成施工1个月能完成总工程的 ,那么甲队半个月完成总工程的 ,乙队半个月完成总工程的 ,两队半个月完成总工程的 .131x1612x1612x+1612x+13+=1得方程:得方程:解得:解得:x=1=1所以乙队的施工速度快。所以乙队的施工速度快。例
27、2 A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度。已知两边的速度之比为5:2,所以设大车的速度为2x千米/时,小车的速度为5x千米/时,而A、B两地相距135千米,则大车行驶时间 小时,小车行驶时间 小时,又知大车早出发5小时,比小车早到30分钟,实际大车行驶时间比小车行驶时间多4.5小时.2x1355x1352x1355x135-=5-0.5解:设大车的速度为解:设大车的速度为2 2x千米千米/时,小车的速度为时,小车的速度为5 5x千米千米/时,时,根据题意得根据题意得解之得解之得
28、x=9=9经检验经检验x=9=9是原方程的解是原方程的解当当x=9=9时,时,2 2x=18=18,5 5x=45=45答:大车的速度为答:大车的速度为1818千米千米/时,时,小车的速度为小车的速度为4545千米千米/时时.例例3 3:农机厂到距工厂:农机厂到距工厂1515kmkm的向阳村检修农机,一部分的向阳村检修农机,一部分人骑自行车先走,过了人骑自行车先走,过了4040分钟,其余人乘汽车去,结果分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的他们同时到达,已知汽车的速度是自行车的3 3倍,求两倍,求两车的速度。车的速度。分析:设自行车的速度是分析:设自行车的速度是xkm
29、/h,汽车的速度是,汽车的速度是3xkm/h请根据题意填写速度、时间、路程之间的关系表请根据题意填写速度、时间、路程之间的关系表速度速度(km/h)路程路程(km)时间(时间(h)自行车自行车 汽车汽车 x3x151515315找出等量关系。找出等量关系。列出方程。列出方程。汽车所用的时间自行车所用时间汽车所用的时间自行车所用时间 时时323215315=-借助表格分借助表格分析数量关系析数量关系 解答由学生完成。解答由学生完成。1 1、甲乙两人同时从、甲乙两人同时从A A地出发,骑自行车到地出发,骑自行车到B B地,已知两地,已知两地地ABAB的距离为的距离为3030,甲每小时比乙多走,甲每
30、小时比乙多走3 3,并且比乙,并且比乙先到先到4040分钟设乙每小时走分钟设乙每小时走x x,则可列方程为,则可列方程为()()2 2、某农场挖一条、某农场挖一条960m960m长的渠道,开工后每天比原计划长的渠道,开工后每天比原计划多挖多挖20m20m,结果提前,结果提前4 4天完成了任务。若设原计划每天天完成了任务。若设原计划每天挖挖xmxm,则根据题意可列出方程(,则根据题意可列出方程()960960204xx960960204xx960209604xx960209604xxBA1、一艘轮船在两个码头之间航行,顺水航行、一艘轮船在两个码头之间航行,顺水航行60km所所需时间与逆水航行需时
31、间与逆水航行48km所需时间相同所需时间相同.已知水流的速已知水流的速度是度是2km/h,求轮船在静水中航行的速度,求轮船在静水中航行的速度.2 2、我军某部由驻地到距离、我军某部由驻地到距离3030千米的地方去执行任务,千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的由于情况发生了变化,急行军速度必需是原计划的1.51.5倍,才能按要求提前倍,才能按要求提前2 2小时到达,求急行军的速度。小时到达,求急行军的速度。3、甲、乙分别从相距36千米的A、B两地同时相向而行甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇
32、,又知甲比乙每小时多走0.5千米,求二人速度7 7、一项工程,需要在规定日期内完成,如果甲队独做,一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定恰好如期完成,如果乙队独做,就要超过规定3 3天,现在天,现在由甲、乙两队合作由甲、乙两队合作2 2天,剩下的由乙队独做,也刚好在规天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?定日期内完成,问规定日期是几天?6、甲、乙两人做某种机器零件,已知甲每小时比乙多、甲、乙两人做某种机器零件,已知甲每小时比乙多做做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用个零件所用
33、时间相等,求甲、乙每小时各做多少个零件?时间相等,求甲、乙每小时各做多少个零件?4 4.某班学生到距学校某班学生到距学校1212千米的烈士陵园扫墓千米的烈士陵园扫墓,一部分人一部分人骑自行车先行骑自行车先行,经经0.50.5时后时后,其余的人乘汽车出发其余的人乘汽车出发,结果结果他们同时到达他们同时到达.已知汽车的速度是自行车的已知汽车的速度是自行车的3 3倍倍,求自行求自行车和汽车的速度车和汽车的速度.5.某农场开挖一条长某农场开挖一条长960米的渠道,开工后工作效率米的渠道,开工后工作效率比计划提高比计划提高50%,结果提前,结果提前4天完成任务,原计划每天天完成任务,原计划每天挖多少米?
34、挖多少米?1.甲、乙两人做某种机器零件,已知甲每小时比乙多做甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用时个零件所用时间相等,求甲、乙每小时各做多少个零件?间相等,求甲、乙每小时各做多少个零件?2.甲、乙两人练习骑自行车,已知甲每小时比乙甲、乙两人练习骑自行车,已知甲每小时比乙多走多走6千米,甲骑千米,甲骑90千米所用的时间和乙起骑千米所用的时间和乙起骑60千千米所用时间相等,求甲、乙每小时各骑多少千米?米所用时间相等,求甲、乙每小时各骑多少千米?3.甲、乙两种商品,已知甲的价格每件比乙多甲、乙两种商品,已知甲的
35、价格每件比乙多6元,买甲元,买甲90件所用的钱和买乙件所用的钱和买乙60件所用钱相等,件所用钱相等,求甲、乙每件商品的价格各多少元?求甲、乙每件商品的价格各多少元?下面三个问题有什么区别和联系?下面三个问题有什么区别和联系?小结小结 列分式方程解应用题的一般步骤:列分式方程解应用题的一般步骤:1.审审:分析题意分析题意,找出数量关系和相等关系找出数量关系和相等关系.2.设设:选择恰当的未知数选择恰当的未知数,注意单位和语言完整注意单位和语言完整.3.列列:根据数量和相等关系根据数量和相等关系,正确列出代数式和方程正确列出代数式和方程.4.解解:认真仔细认真仔细.5.验验:有有两次两次检验检验.6.答答:注意单位和语言完整注意单位和语言完整.且答案要生活化且答案要生活化.检验目的是检验目的是:(1)是否是所列方是否是所列方程的解程的解;(2)是否满足实际意义是否满足实际意义.作业:作业:P36P36练习练习1 1、P36 A 2P36 A 2、4 4
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。