1、2.1.2 空间中直线与直线空间中直线与直线之间的位置关系之间的位置关系习题课习题课问题一:异面直线的判定问题一:异面直线的判定例例1.已知已知m、n为异面直线,为异面直线,m平面平面,n平面平面,l,则,则l()A与与m、n都相交都相交 B与与m、n中至少一条相交中至少一条相交 C与与m、n都不相交都不相交 D与与m、n中的一条直线相交中的一条直线相交 例例2.已知点已知点P、Q、R、S分别是正方体分别是正方体的四条棱的中点,则直线的四条棱的中点,则直线PQ与与RS是异是异面直线的一个图是面直线的一个图是()例例3如图,已知如图,已知a,b,c,baA,ca,求证:,求证:b与与c是异面直是
2、异面直线线 证明假设b与c不是异面直线,则bc或b与c相交(1)若bc,ac,ab与abA矛盾(2)若b与c相交,设bcB,ac,B a,即A、B两点不重合,这样直线b上有两点A、B,b,又b,b是与的公共直线,又a,b与a重合,这与baA矛盾,b与c是异面直线异面直线的证明异面直线的证明:(1)反证法,假设两直线共面,随后导出矛反证法,假设两直线共面,随后导出矛盾,故两直线异面盾,故两直线异面(2)过平面外一点与平面内一点的直线和平过平面外一点与平面内一点的直线和平面内不过该点的直线是异面直线面内不过该点的直线是异面直线(异面直线异面直线判定定理判定定理)问题二:求异面直线所成的角问题二:求
3、异面直线所成的角预备知识预备知识角的知识角的知识正弦定理正弦定理a=2RsinA a=2RsinAS ABC=21bc sinA余弦定理余弦定理ABCbcacosA=bcacb2222 ABCbca二、数学思想、方法、步骤:二、数学思想、方法、步骤:解决空间角的问题涉及的数学思想主要是解决空间角的问题涉及的数学思想主要是化化归与转化归与转化,即把空间的角转化为平面的角,进而,即把空间的角转化为平面的角,进而转化为三角形的内角,然后通过解三角形求得。转化为三角形的内角,然后通过解三角形求得。2.2.方法:方法:3.3.步骤:步骤:求异面直线所成的角:求异面直线所成的角:作(找)证 点 算1.1.
4、数学思想:数学思想:平移平移 构造可解三角形构造可解三角形A A1 1B B1 1C C1 1D D1 1A AB BC CD DMNPQBQ=1BN=2QN=5QC=17NC=52CosQNC=522222NCQNQCNCQN 例例 5、在正方体在正方体ABCD-ABCD中,棱长为中,棱长为a,E、F分别是棱分别是棱AB,BC的中点,求:的中点,求:异面直线异面直线 AD与与 EF所成角的大小;所成角的大小;异面直线异面直线 BC与与 EF所成角的大小;所成角的大小;异面直线异面直线 BD与与 EF所成角的所成角的大小大小.4560异面直线异面直线 BC与与 EF所成角的大小;所成角的大小;
5、6090OGAC AC EF,OG BDBD 与与EF所成的角所成的角即为即为AC与与OG所成的角所成的角,即为即为AOG或其补角或其补角.平移法平移法补形法补形法例例6空间四边形空间四边形SABC中,中,SA=SB=SC=AB=BC=CA,E、F分别是分别是SA、BC中点,则异面直线中点,则异面直线EF与与SC所所成的角成的角900ASBCMNP PMABCPNPBaaaa2a22a42a22a26a46a414a42a414a25510cosPNB三三例例8.例9如图,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,将ABC沿DE、EF、D
6、F折成三棱锥以后,GH与IJ所成角的度数为_ 解析折起后,空间图形如图 A、B、C三点重合为一点A,在BDE中,IJBD,在ADF中,GHDF,折起后,IJAD,直线DF与AD所成的角就是HG与IJ所成的角,在正ADF中,ADF60.例、10由四个全等的等边三角形围成的封闭几何体称为正四面体如图,正四面体ABCD中,E、F分别是棱BC、AD的中点,CF与DE是一对异面直线,在图形中适当的选取一点作出异面直线CF、DE的平行线,找出异面直线CF与DE所成的角解析思路1:选取平面ACD,该平面有以下两个特点:该平面包含直线CF,该平面与DE相交于点D,伸展平面ACD,在该平面中,过点D作DMCF交
7、AC的延长线于M,连结EM.可以看出:DE与DM所成的角,即为异面直线DE与CF所成的角如图1.思路2:选取平面BCF,该平面有以下两个特点:该平面包含直线CF,该平面与DE相交于点E.在平面BCF中,过点E作CF的平行线交BF于点N,连结ND,可以看出:EN与ED所成的角,即为异面直线FC与ED所成的角如图2.思路3:选取平面ADE,该平面有如下两个特点:该平面包含直线DE,该平面与CF相交于点F.在平面ADE中,过点F作FGDE,与AE相交于点G,连结CG,可以看出:FG与FC所成的角,即为异面直线CF与DE所成的角如图3.思路4:选取平面BCD,该平面有如下特点:该平面包含直线DE,该平
8、面与CF相交于点C,伸展平面BCD,在该平面内过点C作CKDE与BD的延长线交于点K,且DKBD,连结FK,则CF与CK所成的角,即为异面直线CF与DE所成的角如图4.总结评述:(1)上面四个思路的共同点是:由两条异面直线中的一条与另一条上一个点确定一个平面,在该平面内过该点作该直线的平行线,从而找出两条异面直线所成的角,这是立体几何“化异为共”“降维”的基本思想(2)求两条异面直线所成角的关键是作出这两条异面直线所成的角,作两条异面直线所成的角的方法是:将其中一条平移到某个位置使其与另一条相交或是将两条异面直线同时平移到某个位置使它们相交,然后在同一平面内求相交直线所成的角值得注意的是:平移
9、后相交所得的角必须容易算出,因此平移时要求选择恰当位置一般提倡像思路2、思路3那样作角,因为此角在几何体内部,易求(3)找出异面直线所成的角后求角的大小一般要归到一个三角形中,通过解三角形求出角的大小,如本题思路1中可归结为解DEM.思路2中可归结为解DEN等等,由于本例中三角形是斜三角形,待我们学过解斜三角形后,即可计算(4)实际问题中,若含有“中点”“比例点”常利用中位线,比例线段进行平移10A为正三角形BCD所在平面外一点,且AB=AC=AD=BC=a,E、F分别是棱AD、BC的中点,连结AF、CE,如图所示,求异面直线AF、CE所成角的余弦值。ABCDEFG解:连结DF,取DF的中点G
10、,连结EG,CG,又E是AD的中点,故EG/AF,所以GEC(或其补角)是异面直线AF、CE所成的角。.4321aAFEG.43232121aABDFFG.47)21()43(2222aABABFCFGCG.32cosGECEGC中用余弦定理得在异面直线AF、CE所成角的余弦值是 3211A为正三角形BCD所在平面外一点,且AB=AC=AD=BC=a,E、F分别是棱AD、BC的中点,连结AF、CE,如图所示,求异面直线AF、CE所成角的余弦值。ABCDEFP另解另解:延长DC至P,使DC=CP,E为AD中点,AP/EC。故PAF(或其补角)为异面直线AF、CE所成的角。,23aAF.27120
11、cos222aPCFCPCFCPF.32aECAP.32cos,PAFPAF得中应用余弦定理异面直线AF、CE所成角的余弦值是 32练习1:如图,P为ABC所在平面外一点,PCAB,PC=AB=2,E、F分别为PA和BC的中点。(1)求证:EF与PC为异面直线;(2)求EF与PC所成的角;(3)求线段EF的长。ABCPEF假设EF与PC不是异面直线,则EF与PC共面由题意可知其平面为PBC,PPBCPEPBCPAPBCP A B CEPBC平面平面即平面共面平面这与已知P为ABC所在平面外一点矛盾PABCMN12、空间四边形、空间四边形P-ABC中,中,M,N分别分别是是PB,AC的中点,的中
12、点,PA=BC=4,MN=3,求求PA与与BC所成的所成的角?角?EADCBA1D1C1B1变题变题:已知正方体已知正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,棱长为中,棱长为a.a.O O为底面中心,为底面中心,F F为为DDDD1 1中点中点E E在在A A1 1B B1 1上上,求求AFAF与与OEOE所成的角所成的角OEFNADCBA1D1C1B12 2、若、若M M为为A A1 1B B1 1的中点,的中点,N N为为BBBB1 1的中点,的中点,求异面直线求异面直线AMAM与与CNCN所成的角;所成的角;NMFE例例14、如图,在三棱锥如图,在三棱锥
13、DABC中,中,DA平面平面ABC,ACB=90,ABD=30,AC=BC,求异,求异面直线面直线AB 与与CD所成的角的余弦值。所成的角的余弦值。ABCD四面体四面体ABCD的棱的棱长均为长均为a,E,F分别分别为棱为棱BC,AD的中点,的中点,(1)求异面直线)求异面直线CF和和BD所成的角的余所成的角的余弦值。弦值。(2)求)求CF与与DE所所成的角。成的角。思考题ABCDEFPQ异面直线所成的角的求法异面直线所成的角的求法:典例剖析例1:如图正方体AC1,求异面直线AB1和CC1所成角的大小 求异面直线AB1和A1D所成角的大小 D1D1CB1A1ADD1BC1分析 1、做异面直线的平
14、行线 2、说明哪个角就是所求角 3、把角放到平面图形中求解 解:CC1/BB1 AB1和BB1所成的锐角是异面直线AB1和CC1所成的角 在ABB1中,AB1和BB1所成的角是450 异面直线AB1和CC1所成的角是450。异面直线所成的角的求法异面直线所成的角的求法:典例剖析例1:如图正方体AC1,求异面直线AB1和CC1所成角的大小 求异面直线AB1和A1D所成角的大小 D1D1CB1A1ADD1BC1分析 1、做异面直线的平行线 2、说明哪个角就是所求角 3、把角放到平面图形中求解 在面A1B1CD中,A1B1 CD A1D/B1C AB1和B1C所成的锐角是异面直线AB1和A1D所成的
15、角 在AB1C中,AB1和CC1所成的角是600 异面直线AB1和A1D所成的角是600。DB1A1D1C1ACBDB1A1D1C1ACBDB1A1D1C1ACB正方体正方体ABCD-A1B1C1D1中中,P为为 BB1的中点的中点,如图画出下面各题中指定的异面直线如图画出下面各题中指定的异面直线P异面直线所成的角是锐角或直角,当三角形内角是钝角时,异面直线所成的角是锐角或直角,当三角形内角是钝角时,表示异面直线表示异面直线所成的角是它的补角所成的角是它的补角.DB1A1D1C1ACB以第三幅图为例,设正方体的棱长为1,求异面直线的夹角FE1EF1如图,补一个与原正方体全等的并与原正方体有公共
16、面的正方体如图,补一个与原正方体全等的并与原正方体有公共面的正方体11111ACEACBD解:根据图像知,或它的补角是与的夹角1111222111111011AC=2,BD=3,AE=5AC+BD=AE,ACEACE 90则是直角三角形0111A CD B90异面直线与的夹角是补形法补形法把空间图形补成熟悉的或完整的几何体,把空间图形补成熟悉的或完整的几何体,如正方体、长方体等,其目的在于易于发如正方体、长方体等,其目的在于易于发现两条异面直线的关系。现两条异面直线的关系。在空间四边形S-ABC中,SABC且 SA=BC,E,F分别为SC、AB 的中点,那么异面直线EF 与SA 所成的角等于()CSABEFD(A)300 (B)450 (C)600 (D)900练习B
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。