1、等比数列公开课教案 一、教学目标1知识与技能(1)理解等比数列的概念,掌握公比的意义,会用多种方法表示等比数列;(2)掌握等比中项的意义,能根据定义判定一个数列是等比数列;(3)掌握等比数列的通项公式,能灵活运用通项公式求等比数列的首项、公差、项数、指定项数的项.2过程与方法经历等比数列的简单产生过程和应用等比数列的基本知识解决问题的过程,会用方程的思想方法完成相关计算问题.经历用类比的思想方法思考从等差数列到等比数列的相关概念的过程.3情感、态度与价值观通过等比数列概念的归纳概括,培养学生的观察、分析资料的能力,提高对数字规律的观察能力,培养积极思维、追求新知的创新意识.二、教学重点、难点重
2、点:等比数列的概念,等比数列的通项公式;难点:等比数列通项公式的熟练应用.三、教学方法 启发式,讨论式四、教学用具:多媒体辅助教学五、教学过程(一)创设情景,导入课题复习:等差数列的定义: =d ,(n2,nN)等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列. 观察1:某细胞不断地进行分裂,每小时一个细胞分裂为2个细胞,那么一个细胞经过n个小时分裂后的细胞总数构成一个数列 1,2,4,8,16观察2:放射性物质镭的半衰期为500年,如果从现有的克镭开始,每隔500年,剩余量依次为 观察3:按活期存入10000元钱,年利率是1.98%,那么按照复利,五年内各
3、年末的本利和分别是 时间年初本金(元)年末本利和(元)第1年10000100001.0198第2年100001.0198100001.01982第3年100001.019100001.01983第4年100001.01983100001.01984第5年100001.01984100001.01985 各年末的本利和(元)组成了一个数列:,上述例子构成三个不同的数列,请同学们仔细观察一下,看看以上这三个数列有什么共同特征?教师引导学生类比等差数列给出这几个数列的共同特点.生答:共同特点:从第二项起,每一项与前一项的比都等于同一个常数. (二)师生互动,探究新知1等比数列:一般地,如果一个数列从
4、第二项起,每一项与它前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数就叫做等比数列的公比. 公比通常用字母q表示(q0),即:=q(q0)说明 1) 任一项“0”是数列成等比数列的必要非充分条件2) 当q= 1时,an为常数列.此时非零常数列既是等差数列又是等比数列.2. 等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G=ab,则,即a,G,b成等比数列. a,G,b成等比数列G=ab(ab0)3.等比数列的通项公式由等比数列的定义,有:; 等比数
5、列的通项公式 :师生一起讨论等比数列通项公式的函数性质,探究(1)在直角坐标系中,画出通项公式为an=2n的数列的图象.这个图象有什么特点? (2)在同一直角坐标系中,画出函数y=2x的图象.你发现了什么? 结论:当q是不为1的正数时,它是一个非零常数与一个指数函数的乘积. y=cqx (q0,q1)(三) 概念辨析,公式应用 例1已知数列的通项公式为,试问这个数列是等比数列吗? 解:因为当n2时, 所以数列是首项a1=12、公比q=4的等比数列. 师生讨论等比数列的三种判定方法: 例2. 某种放射性物质不断变化为其它物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?解:解:设这种物质最初的质量是1,经过n年,剩留的量是,由条件可得,数列是一个等比数列,其中a1=0.84,q=0.84设=0.5,则 =0.5 两边取对数,得 nlg0.84=lg0.5 用计算器可得 n4答:这种物质的半衰期大约为4年. 例3. 一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项. 答:这个数列的第1项和第2项分别是练习:已知等比数列中,=20,=5,求.(四)小结 (1)等比数列的相关概念及表示 (2)等比数列的通项公式及其函数特性.(五)作业 P53-54习题2.4 A组1,2,3,4,7. 5 / 5