1、12.2三角形全等的判定第十二章 全等三角形第第3课时课时 “角边角角边角”、“角角边角角边”情境引入学习目标1探索并正确理解三角形全等的判定方法“ASA”和“AAS”2会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等导入新课导入新课 如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?情境引入321讲授新课讲授新课三角形全等的判定(“角边角”定理)一问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?ABCABC图一图一图二图二“两角及夹边”“两角和其中一角的
2、对边”它们能判定两个三角形全等吗?作图探究 先任意画出一个ABC,再画一个A B C ,使A B =AB,A =A,B =B(即使两角和它们的夹边对应相等).把画好的A B C 剪下,放到ABC上,它们全等吗?ACBACBABCED作法:(1)画AB=AB;(2)在AB的同旁画DAB=A,EBA=B,AD,BE相交于点C.想一想:从中你能发现什么规律?知识要点“角边角”判定方法u文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).u几何语言:A=A(已知),),AB=A B(已知),),B=B(已知),),在ABC和和A B C中,ABC A B C(ASA).
3、AB CA B C 例1 已知:ABCDCB,ACB DBC,求证:ABCDCBABCDCB(已知),BCCB(公共边),ACBDBC(已知),证明:在ABC和DCB中,ABCDCB(ASA).典例精析BCAD 判定方法:两角和它们的夹边对应相等两个三角形全等 例2 如图,点D在AB上,点E在AC上,AB=AC,B=C,求证:AD=AE.ABCDE分析:证明ACDABE,就可以得出AD=AE.证明:在ACD和ABE中,A=A(公共角),),AC=AB(已知),),C=B(已知),),ACDABE(ASA),AD=AE.问题:若三角形的两个内角分别是60和45,且45所对的边为3cm,你能画出这
4、个三角形吗?6045用“角角边”判定三角形全等二合作探究6045思考:这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?75两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.归纳总结A=A(已知),),B=B(已知),),AC=AC(已知),),在ABC和和ABC中,ABC A B C(AAS).AB CA B C 例3:在ABC和DEF中,AD,B E,BC=EF.求证:ABCDEFBE,BCEF,CF.证明:在ABC中,A+B+C180.ABCDEF(ASA).C180AB.同理同理 F180DE.又又 AD,B E,CF.在ABC和DEF中
5、,例4 如图,已知:在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E.求证:(1)BDAAEC;证明:(1)BDm,CEm,ADBCEA90,ABDBAD90.ABAC,BADCAE90,ABDCAE.在BDA和AEC中,ADB=CEA=90,ABDCAE,ABAC,BDAAEC(AAS).(2)DEBDCE.BDAE,ADCE,DEDAAEBDCE.证明:BDAAEC,方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化 1.ABC和DEF中,ABDE,BE,要
6、使ABCDEF,则下列补充的条件中错误的是()AACDF BBCEF CAD DCF 2.在ABC与ABC中,已知A44,B67,C69,A44,且ACAC,那么这两个三角形()A一定不全等 B一定全等 C不一定全等 D以上都不对 当堂练习当堂练习AB 3.如图,已知ACB=DBC,ABC=CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCDABCDEF4.如图ACB=DFE,BC=EF,那么应补充一个条件 ,才能使ABCDEF(写出一个即可).B=E或A=D或 AC=DF(ASA)(AAS)(SAS)AB=DE可以吗?可以吗?ABDE5.已知
7、:如图,ABBC,ADDC,1=2,求证:AB=AD.ACDB1 2证明:ABBC,ADDC,B=D=90.在ABC和ADC中,1=2 (已知),),B=D(已证),),AC=AC(公共边),),ABCADC(AAS),AB=AD.学以致用:如图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?321答:带1去,因为有两角且夹边相等的两个三角形全等.能力提升:已知:如图,ABC ABC,AD、A D 分别是ABC 和ABC的高.试说明AD AD,并用一句话说出你的发现.ABCDA B C
8、D 解:因为ABC ABC,所以AB=AB(全等三角形对应边相等),ABD=ABD(全等三角形对应角相等).因为ADBC,ADBC,所以ADB=ADB.在ABD和ABD中,ADB=ADB(已证),ABD=ABD(已证),AB=AB(已证),所以ABDABD.所以AD=AD.ABCDA B C D 全等三角形对应边上的高也相等.课堂小结课堂小结 边角边角 角 边内 容有两角及夹边对应相等的两个三角形全等(简写成“ASA”)应 用为证明线段和角相等提供了新的证法注 意注意“角角边”、“角边角”中两角与边的区别12.2三角形全等的判定第第3课时课时 “角边角角边角”、“角角边角角边”回首往事:回首往
9、事:1.什么样的图形是全等三角形?什么样的图形是全等三角形?2.判断三角形全等至少要有几个条件?判断三角形全等至少要有几个条件?答:至少要有三个条件答:至少要有三个条件边边边公理边边边公理:有有三边三边对应相等的两个三角形全等。对应相等的两个三角形全等。边角边公理边角边公理:有有两边两边和它们和它们夹角夹角对应相等的两个对应相等的两个三角形全等。三角形全等。ABCABC问题:问题:如果已知一个三角形的如果已知一个三角形的两角及一边两角及一边,那,那么有几种可能的情况呢?么有几种可能的情况呢?答:答:角边角(角边角(ASA)角角边(角角边(AAS)先任意画出一个先任意画出一个ABC,再画一个,再
10、画一个A/B/C/,使使A/B/=AB,A/=A,B/=B(即使两角和它们的夹边对应相等即使两角和它们的夹边对应相等)。把画好的把画好的A/B/C/剪下,放到剪下,放到ABC上,它们全等吗?上,它们全等吗?探究探究5B BA AC C画法:画法:1、画、画A/B/AB;2、在、在 A/B/的同旁画的同旁画DA/B/=A,EB/A/=B,A/D,B/E交于点交于点C/。通过实验你发现了什么规律?通过实验你发现了什么规律?ACBABCED已知:任意已知:任意 ABC,画一个,画一个 A/B/C/,使使A/B/AB,A/=A,B/=B:A/B/C/就是所要画的三角形。就是所要画的三角形。CDAABE
11、A=A(已知已知)AB=AC(已知已知)B=C(已知已知)在在ABE和和ACD中中 ABE ACD(ASA)用数学符号表示用数学符号表示:两角两角和它们的和它们的夹边夹边对应相等的两个三角形全对应相等的两个三角形全等等 (可以简写成可以简写成“角边角角边角”或或“ASA”)。)。探究反映的规律是:探究反映的规律是:如图,应填什么就有如图,应填什么就有 AOC BOD:A=B,(已知)(已知),1=2,(已知)(已知)AOC BOD(ASA)OACDBAO=BO 两角两角和它们的和它们的夹边夹边对应相等的两个三角形全对应相等的两个三角形全等等 (可以简写成可以简写成“角边角角边角”或或“ASA”
12、)。)。12例题讲解例题讲解例例1.已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交相交于点于点O,AB=AC,B=C。求证:求证:(1)AD=AE;(2)BD=CE。证明证明:在在ADC和和AEB中中A=A(公共角公共角)AC=AB(已知已知)C=B(已知已知)ACD ABE(ASA)AD=AE(全等三角形的对应边相等全等三角形的对应边相等)又又AB=AC(已知已知)BD=CEDBEAOC1.如图如图,O是是AB的中点,的中点,A=B,AOC与与BOD全等吗全等吗?为什么?为什么?OABCD两角和夹边两角和夹边对应相等对应相等BABOAOBODAOC BODAOCDD
13、)(ASABODAOCDD和(已知已知)(中点的定义中点的定义)(对顶角相等对顶角相等)解:解:在在 中中2.如图,点如图,点B、E、C、F在一条直线上,在一条直线上,ABDE,ABDE,AD 求证:求证:BE=CFFEDCBA 小明踢球时不慎把一块小明踢球时不慎把一块三角形玻璃打碎为两块三角形玻璃打碎为两块,他是他是否可以只带其中的一块碎片否可以只带其中的一块碎片到商店去到商店去,就能配一块于原来就能配一块于原来一样的三角形玻璃呢一样的三角形玻璃呢?如果可以如果可以,带哪块去合适带哪块去合适呢呢?为什么为什么?(2)(1)CBEAD(1)(2)探究探究6 如下图,在如下图,在ABC和和DEF
14、中中,A D,BE,BCEF,ABC与与DEF全等吗?能利用全等吗?能利用角边角角边角条件证明你的结论吗?条件证明你的结论吗?E EF FD DB BA AC C在在ABC和和DEF中中,A+B+C1800,D+E+F=1800,A D,BE,CF,BE,BCEF,CF,ABC DEF(ASA)CDAABEAE=AD(已知已知)A=A(已知已知)B=C(已知已知)在在ABE和和ACD中中 ABE ACD(AAS)用数学符号表示用数学符号表示:两个角两个角和其中和其中一个角的对边一个角的对边对应相等的两个三角对应相等的两个三角形全等形全等(可以简写成(可以简写成“角角边角角边”或或“AASAAS
15、”)。)。探究反映的规律是:探究反映的规律是:例例:如图如图,O是是AB的中点,的中点,C=D,AOC与与BOD全等吗全等吗?为什么?为什么?OABCD两角和对边两角和对边对应相等对应相等BOAOBODAOC BODAOCDDBODAOCDD和(已知已知)(中点的定义中点的定义)(对顶角相等对顶角相等)解:解:在在 中中C=D(AAS)到目前为止到目前为止,我们一共探索出判定三我们一共探索出判定三角形全等的四种规律,它们分别是角形全等的四种规律,它们分别是:1 1、边边边、边边边 (SSS)3 3、角边角、角边角 (ASA)4 4、角角边、角角边 (AAS)2 2、边角边、边角边 (SAS)练
16、一练:练一练:1、如图、如图ACB=DFEACB=DFE,BC=EFBC=EF,根据,根据SAS,ASASAS,ASA或或AASAAS,那么应补充一个直接条件那么应补充一个直接条件 -,(写出一个即可),才能使(写出一个即可),才能使ABCABCDEF.DEF.2、如图,、如图,BE=CD,1=2,则,则AB=AC吗?为什么?吗?为什么?ABCDEFAC=DFAC=DF或或B=EB=E或或A=DA=DCAB12EDAB=ACAB=AC相等相等知识应用知识应用1.如图,要测量河两岸相对的两点如图,要测量河两岸相对的两点A,B的距离,可以的距离,可以在在AB的垂线的垂线BF上取两点上取两点C,D,
17、使,使BC=CD,再定出,再定出BF的垂线的垂线DE,使,使A,C,E在一条直线上,在一条直线上,这时测得这时测得DE的长就是的长就是AB的长。为什么?的长。为什么?ABCDEF在在ABC和和EDC中中,B=EDC=900 BCDC,12,ABC DEF(ASA)ABED.12证明:证明:2.2.如图如图,AB,ABBC,ADBC,ADDC,1=2.DC,1=2.求证求证:AB=AD.:AB=AD.知识应用知识应用在在ABC和和ADC中中,B=D,12,ACAC,ABC ADC(AAS)ABAD.证明:证明:ABABBC,ADBC,ADDC,DC,B=D=900,练练 习习 ACB=DEFAB
18、=DEAB=DE、AC=DFA=D1 1、边边边、边边边 (SSS)3 3、角边角、角边角 (ASA)4 4、角角边、角角边 (AAS)2 2、边角边、边角边 (SAS)(1)图中的两个三角形全等吗图中的两个三角形全等吗?请说明理由请说明理由.全等全等 因为两角和其中一角的对边对应相等的两因为两角和其中一角的对边对应相等的两个三角形全等个三角形全等.3535110110ABCDDBCABCDABCBC DBCABCDD()AASABCDBCDD和解:在中(已知已知)(已知已知)(公共边公共边)练练 习习相等吗?与,那么且,于,于中,)已知(DCBDCFBEFADCFEADBEABCD2DABC
19、EFBEADCFAD,证明:90(BEDCFD垂直的定义)中和在CDFBDEDDBEDCFD(已证)BDECDF 对顶(角相等)BECF(已知)BDECDF AASD D()BDCD全等三角形对应(边相等)(3)如图,如图,AC、BD交于点交于点O,AC=BD,AB=CD.求证:求证:BC)1(ODOA)2(ABCDO证明证明:(1)连接连接AD,在在ADC和和DAB中中AD=DA(公共边公共边)AC=DB(已知已知)DC=AB(已知已知)ADC DAB(SSS)C=B(全等三角形的对应角相等全等三角形的对应角相等)(2)在在 AOB 和和 DOC中中 B=C(已证已证)1=2(对顶角相等对顶
20、角相等)DC=AB(已知已知)DOC AOB(AAS)OA=OD(全等三角形的对应边相等全等三角形的对应边相等)12练练 习习综合应用综合应用1.如图,点如图,点E在在AB上,上,1=2,3=4,那么,那么CB等于等于DB吗?为什吗?为什么?么?EDCBA4321-全等三角形判定全等三角形判定2.2.如图,如图,说出说出ABAB 的理由。的理由。3.3.如图,如图,AB=DEAB=DE,AF=CDAF=CD,EF=BCEF=BC,A AD D,试说明:试说明:BFCE BFCE ABCDEF 4.如图,在如图,在AFD和和BEC中,点中,点A、E、F、C在在同一直线上,有下列四个论断:同一直线
21、上,有下列四个论断:AD=CB,AE=CF,BD,AC.请用其中三个作为条件,余下一个作为结论,请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程。编一道数学问题,并写出解答过程。ABCDEF5.如图,在如图,在ABC和和BAD中,中,BC=AD,请你,请你再补充一个条件,使再补充一个条件,使ABC BAD你补充的你补充的条件是条件是 .DABCABCEF6.已知:如图,已知:如图,AEF 与与ABC中,中,E=B,EF=BC.请你添加一个条件,请你添加一个条件,使使AEF ABC.对于添加条件使两三角形全等的问题,当已有两个对于添加条件使两三角形全等的问题,当已有两个条件
22、(包括隐含条件)时,如何思考?条件(包括隐含条件)时,如何思考?7.在在ABC中中,ACB=90,AC=BC,直线直线MN经过经过点点C,ADMN于点于点D,BE MN于点于点E,(1)当直线)当直线MN旋转到如图旋转到如图(1)所示的位置时所示的位置时,猜想猜想线段线段AD、BE、DE的数量关系,并证明你的猜想。的数量关系,并证明你的猜想。NMEDCBA图图(1)7.在在ABC中中,ACB=90,AC=BC,直线直线MN经经过点过点C,ADMN于点于点D,BE MN于点于点E,(2)当直线)当直线MN旋转到图旋转到图(2)的位置时的位置时,猜想线段猜想线段AD,BE,DE的数量关系,并证明你
23、的猜想的数量关系,并证明你的猜想NMEDCBA图图(2)7.在在ABC中中,ACB=90,AC=BC,直线直线MN经经过点过点C,ADMN于点于点D,BE MN于点于点E,(3)当直线)当直线MN旋转到图旋转到图(3)的位置时的位置时,猜想线段猜想线段AD,BE,DE的数量关系,并证明你的猜想的数量关系,并证明你的猜想NMEDCBA图图(3)如图,已知:点如图,已知:点B、F、C、E在一条直线上,在一条直线上,FB=CE,AC=DF能否由上面的已知条件证明能否由上面的已知条件证明ABED?如果能,请给出证?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,明;如果不能,请从下
24、列三个条件中选择一个合适的条件,添加到已知条件中,使添加到已知条件中,使ABED成立,并给出证明成立,并给出证明供选择的三个条件(请从其中选择一个):供选择的三个条件(请从其中选择一个):AB=ED;BC=EF;ACB=DFEABDEFC人教版八年级(上册)人教版八年级(上册)12.2 12.2 三角形全等的判定三角形全等的判定第第3课时课时 “角边角角边角”、“角角边角角边”1.1.什么是全等三角形?什么是全等三角形?2.2.判定两个三角形全等要具备什么条件判定两个三角形全等要具备什么条件?复习复习边边边:三边对应相等的两个三角形全等。边角边:有两边和它们夹角对应相等的两个三角形全等。一张教
25、学用的三角形硬纸板不小心一张教学用的三角形硬纸板不小心被撕坏了(如下图),你能制作一张被撕坏了(如下图),你能制作一张与原来同样大小的新教具吗?能恢复与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?原来三角形的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入CBEAD 先任意画出一个ABC,再画一个A/B/C/,使A/B/=AB,A/=A,B/=B。把画好的A/B/C/剪下,放到ABC上,它们全等吗?探究1已知:任意 ABC,画一个 A/B/C/,使A/B/AB,A/=A,B/=B:画法:2、在 A/B/的同旁画DA/B/=A,EB/A/=B,A/D,B/E交于点C/。1、画A/B/AB;
26、A/B/C/就是所要画的三角形。问:通过实验可以发现什么事实?有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。探究反映的规律是:CDAABEA=A(已知已知),),AB=AC(已知已知),),B=C(已知已知),),证明:在证明:在ABE和和ACD中,中,所以所以 ABE ACD(ASA)。)。用数学语言表述:现在就练现在就练DBEAOC点点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于点相交于点O,AB=AC,B=C。求证求证:ABE ACD.1.证明:证明:在在ABE和和ACD中,中,B=C,AB=AC,A=A,ABE ACD(ASA)2.如图,如图,
27、1=2,3=4 求证:求证:AC=ADCADB1234证明:证明:在在ABD和和ABC中,中,3+ABD=4+ABC=180 3=4 ABD=ABC又有又有1=2,AB=AB ABD ABCAC=AD 在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF能得到两三角形全等,但不能利用“角边角”判定。引入了一种新的判定三角形全等的方法:有两角和它们中的一边对应相等有两角和它们中的一边对应相等的两个三角形全等的两个三角形全等(简写成简写成“角角边角角边”或或“AAS”)。)。CDAABEAE=AD,A=A,B=C,证明:在证明:在
28、ABE和和ACD中,中,所以 ABE ACD(ASA)。)。用数学语言表述:用数学语言表述:如图,如图,1=2,C=D,求证:求证:AC=AD 证明:证明:CADB12现在就练现在就练如图,如图,1=2,C=D 求证:求证:AC=AD 在在ABD和和ABC中,中,1=2(已知),(已知),D=C(已知),(已知),AB=AB(公共边),(公共边),所以所以ABD ABC(AAS)。)。所以所以AC=AD(全等三角形对应边相等)。(全等三角形对应边相等)。证明:证明:CADB12(1)学习了角边角、角角边;(2)注意角角边、角边角中两角与边的区别;(3)会根据已知两角画三角形;(4)进一步学会用推理证明。课本P41练习第2题;P44习题12.2第5题。课后作业课后作业
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。