1、阶段方法技巧训练(二)阶段方法技巧训练(二)专训专训2 2 整体思想在整式乘整体思想在整式乘 除运算中的应用除运算中的应用习题课习题课 解决某些数学问题时,把一组数或一个式子解决某些数学问题时,把一组数或一个式子看成一个整体进行处理,不仅可以简化解题过程,看成一个整体进行处理,不仅可以简化解题过程,而且还能拓宽思路,培养创新意识,体现了数学而且还能拓宽思路,培养创新意识,体现了数学中的一种重要思想中的一种重要思想整体思想这一思想在整整体思想这一思想在整式的乘除运算中体现明显,在解题中应用较多,式的乘除运算中体现明显,在解题中应用较多,要引起重视要引起重视 1应用应用幂的运算中的整体思想幂的运算
2、中的整体思想1已知已知2x3y30,求,求39x27y的值的值39x27y3(32)x(33)y332x33y312x3y.因为因为2x3y30,所以所以2x3y3.所以原式所以原式3133481.解:解:2应用应用乘法公式运算中的整体思想乘法公式运算中的整体思想2已知已知a x20,b x18,c x16,求式子求式子a2b2c2abacbc的值的值类型类型1 化繁为简整体代入化繁为简整体代入383838由由a x20,b x18,c x16,可得可得ab2,bc2,ca4.从而从而a2b2c2abacbc (ab)2(bc)2(ca)2 (2)2(2)242 2412.解:解:383838
3、1212123已知已知xy4,xy1,求式子,求式子(x21)(y21)的值的值(x21)(y21)x2y2x2y21 (xy)2(xy)22xy1.把把xy4,xy1整体代入得整体代入得124221116,即即(x21)(y21)16.解:解:类型类型2 变形后整体代入变形后整体代入4已知已知abbc ,a2b2c21,求,求ab bcca的值的值由由abbc ,可以得到,可以得到ac .由由(ab)2(bc)2(ac)22(a2b2c2)2(abbcac),得到,得到abbcca(a2b2c2)(ab)2(bc)2(ac)2将将a2b2c2,ab,bc及及ac的值整体代入,可得的值整体代入
4、,可得abbcca1()2 1 .解:解:3535651212123523526554252255已知已知a2a10,求,求a32a22 016的值的值因为因为a2a10,所以所以a0.所以将等式两边都乘所以将等式两边都乘a,可得,可得a3a2a0.将将相加得相加得a32a210,即,即a32a21.所以所以a32a22 01612 0162 017.解:解:6已知已知(2 016a)(2 018a)2 017,求求(2 016a)2(2 018a)2的值的值(2 016a)2(2 018a)2(2 016a)(2 018a)22(2 016a)(2 018a)(2)222 01744 034
5、4 038.解:解:本题运用乘法公式的变形本题运用乘法公式的变形x2y2(xy)22xy,结合结合整体思想整体思想求解,使计算简便求解,使计算简便3应用应用多项式乘法运算中的整体思想多项式乘法运算中的整体思想7若若M123 456 789123 456 786,N123 456 788123 456 787,试比较,试比较M与与 N的大小的大小设设123 456 788a,则,则123 456 789a1,123 456 786a2,123 456 787a1.解:解:类型类型1 数字中的换元数字中的换元从而从而M(a1)(a2)a2a2,Na(a1)a2a.所以所以MN(a2a2)(a2a)
6、20.所以所以MN.8计算:计算:(a1a2an1)(a2a3an1 an)(a2a3an1)(a1a2an)(n3,且且n为正整数为正整数)设设a2a3an1M,则原式则原式(a1M)(Man)M(a1Man)a1Ma1anM2anMa1MM2anMa1an.解:解:类型类型2 多项式中的换元多项式中的换元 本题如果按正常展开的方式来运算显然是很复本题如果按正常展开的方式来运算显然是很复杂的这一类带杂的这一类带“”的题中,往往蕴藏着重要的技的题中,往往蕴藏着重要的技巧,而发现技巧的关键是观察因此,在解决这类巧,而发现技巧的关键是观察因此,在解决这类问题时,不要忙于解答,而要冷静观察,寻找解决问题时,不要忙于解答,而要冷静观察,寻找解决问题的突破口比如这一题,在观察时能发现问题的突破口比如这一题,在观察时能发现a2a3an1这个式子在每一个因式中都存在因这个式子在每一个因式中都存在因此,可以考虑将这个式子作为一个整体,设为此,可以考虑将这个式子作为一个整体,设为M,问题就简化了,体现了问题就简化了,体现了整体思想整体思想的运用的运用